富岳を用いた大規模言語モデルの分散並列学習 Distributed Training of Large Language Models on Fugaku

Tokyo Institute of Technology
GSIC
Rio Yokota

2022年度第2回計算科学フォーラム2023年3月28日(火)

Collaborators

GPT-Fugaku Team

Noriyuki Kojima

Kazuto Ando

Koji Nishiguchi

Jungo Kasai

Keisuke Sakaguchi

Shukai Nakamura

DL4Fugaku Team @ R-CCS

Aleksandr Drozd

Mohamed Wahib

Kento Sato

Jens Domke

Emil Vatai

DL4Fugaku Team @ LLNL

Nikoli Dryden

Tal Ben Nun

Fujitsu

Koichi Shirahata

Large Language Models

Fastest growing app in history

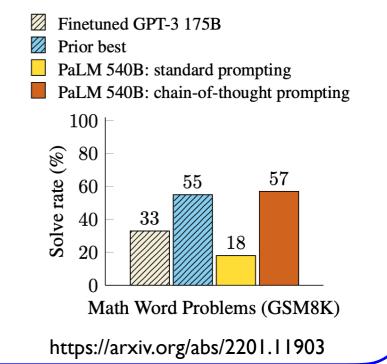
Platform	Time to first 1 million users		
ChatGPT	5 days		
Facebook	10 months		
Instagram	2 months		
Spotify	5 months		
Netflix	3.5 years		

https://nerdynav.com/chatgpt-statistics/

Will change the landscape of ...

- Web search
- Machine translation & summarization
- Creative writing in research & education
- Coding & Debugging

Chain of Thought Prompting



Multimodal Language Models

Mobile Manipulation

Human: Bring me the rice chips from the drawer. Robot: 1. Go to the drawers, 2. Open top drawer. I see . 3. Pick the green rice chip bag from the drawer and place it on the counter.

Visual Q&A, Captioning ...

Describe the following :
A dog jumping over a hurdle at a dog show.

Control

PaLM-E: An Embodied Multimodal Language Model

Given <emb> ... Q: How to grasp blue block? A: First, grasp yellow block

? VIT

Large Language Model (PaLM)

A: First, grasp yellow block and ...

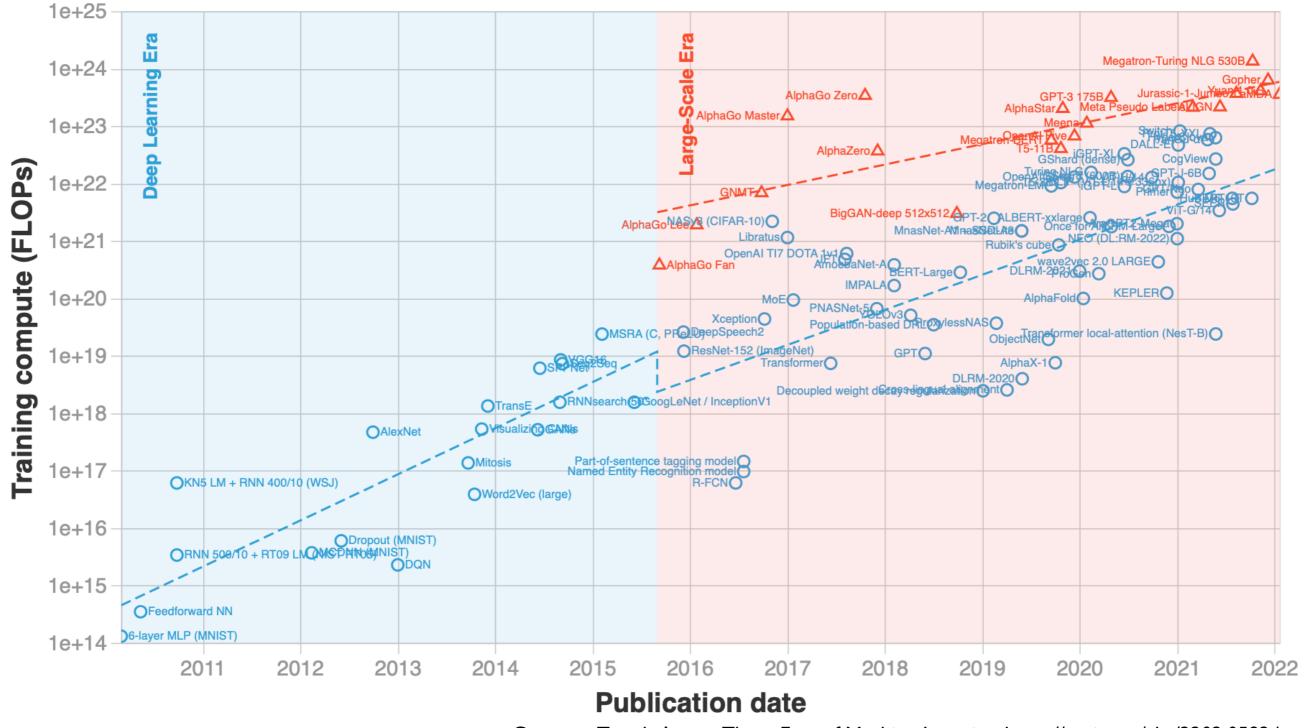
Language Only Tasks

Here is a Haiku about embodied language models: Embodied language models are the future of natural language

Will change the landscape of ...

- Robotics & Autonomous driving
- Medicine & Science
- Explainable Al

Deep Learning Scaling Law

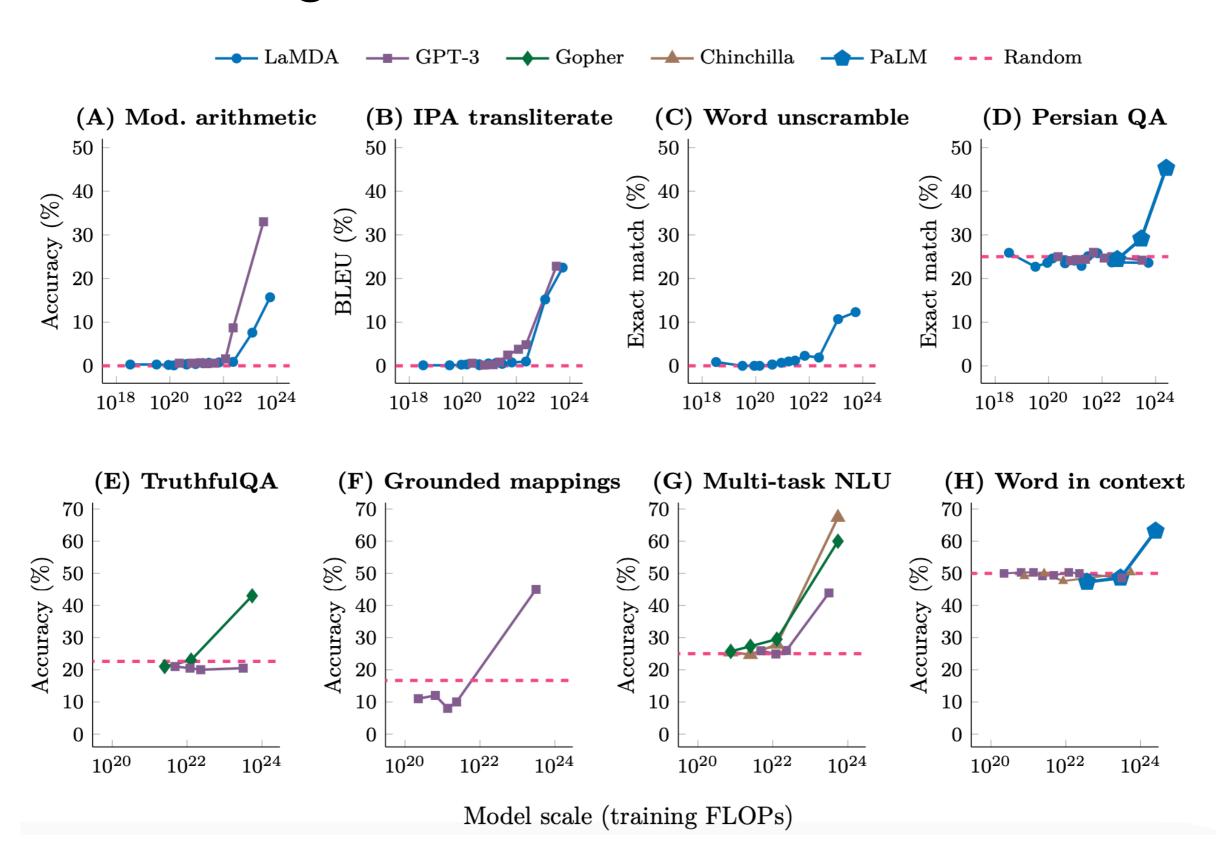


Compute Trends Across Three Eras of Machine Learning, https://arxiv.org/abs/2202.05924

Moore's law: 1970-2020の50年で107倍

DL Scaling law: 2010-2022の12年で1010倍

Emergent Abilities at 10²²-10²⁴ FLOPs



How Long It Will Take to Train GPT

```
GPT-3.5 (ChatGPT): 3×10<sup>24</sup>FLOPs (speculated)
GPT-3: 3×10<sup>23</sup>FLOPs

Fugaku:
FP32 6.76TFLOP/s x 158,976 = 1.07 EFLOP/s (theoretical peak)
GPT-4: 328 days x 10
GPT-3.5: 32 days x 10
GPT-3: 3.3 days x 10
```

OpenAl:

```
BF16 312 TFLOP/s \times 25,000 = 7.8 EFLOP/s (theoretical peak)
```

GPT-4: 45 days × 2

GPT-3.5: 4.5 days x 2

GPT-4: 3×10²⁵FLOPs (speculated)

GPT-3: II hours x 2

Actual Performance

Cost of GPT vs Weather Simulation

	GPT-4	3.5Km Global Weather Simulation	
Description	~ 1 Trillion parameters ~ 450 Billion Tokens	4.4 Trillion Grid Points w/ Data Assimilation	
Goal	Training (Note: inference cost is also immense)	9 hours Simulation	
Precision	16FP; Bfloat 32; FP32	Double precision Mixed precision (FP64+FP32)	
Resources Time (end-to-end: inc. I/O) CPU/GPU-hours	25,000 Nvidia A100 GPUs 90 days ~1625x 54,000,000 GPU-hours	131,072 Fugaku Nodes (A64FX) 14,200 seconds 33,230 CPU-hours	
Compute per token (LLM) or grid point (Gloal Weather Sim.)	Training: ~ 6x model parameters → 6 TFLOPS Inference: ~ 2x model parameters → 2 TFLOPS ◆	~ 90 MFLOPS 	
Notes:	 10s of attempts to get to production training Full training might be needed to observe impovement 	- Incrementaly increase resolution	

A 1024-Member Ensemble Data Assimilation with 3.5-Km Mesh Global Weather Simulations, SC 2020 (Gordon Bell Finalist) provided by Mohamed Wahib, R-CCS

A Gordon Bell submissions will use a few hours of the whole Fugaku

Training GPT-4 will take a year on the whole Fugaku even with its FP32 peak

Related Projects

ABCI GC FY2019: Second Order Optimization

Trained ImageNet in less than 2 minutes with 131k batch size (2048 GPUs)

HPCI FY2020: Minimizing Memory Footprint Reduced memory consumption to allow training of I4B parameter model on a single node

HPCI FY2021: Minimizing I/O Training directly from tar files, reduced I/O latency and inodes by I/1000

HPCI FY2022: Training Vision Transformers on Synthetic Datasets Surpassed the accuracy of ImageNet-21k using a purely synthetic dataset

HPCI FY2023: Performance Optimization of Transformers on A64FX and Their Application to Vision & Language

INCITE FY2023: Large Vision+Language Models on Summit/Frontier 6M GPU hours allocated (PI: Irina Rish, U. Montreal)

Distributed Training

Data Parallel (DP)

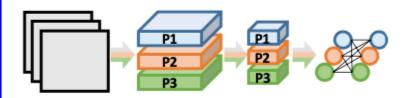
Distributed Data

Redundant Model

AllReduce Gradients

Large batch problem

Tensor Parallel (TP)
or
ZeRO/FSDP



Redundant Data

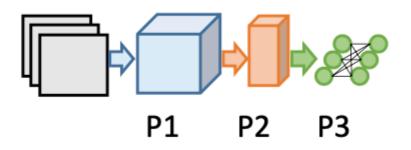
Distributed Model

AllReduce Activations or

AllGather Parameters

Frequent Communication

Pipeline Parallel (PP)



Distributed Data

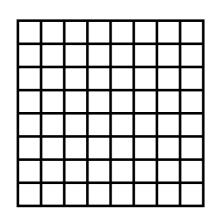
Distributed Model

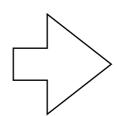
SendRecv Activations

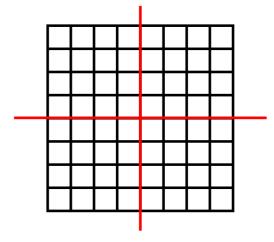
Pipeline bubble

What is Strong Scaling in Deep Learning?

Scientific Computing

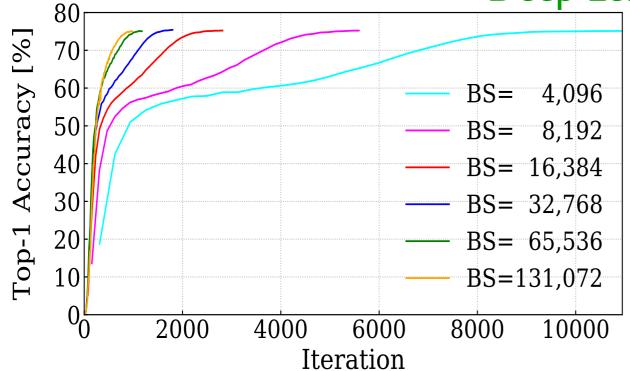


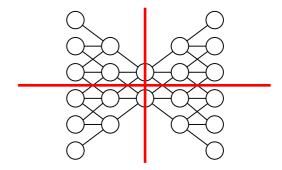




Given a certain mesh size

Reduce solution time by partitioning

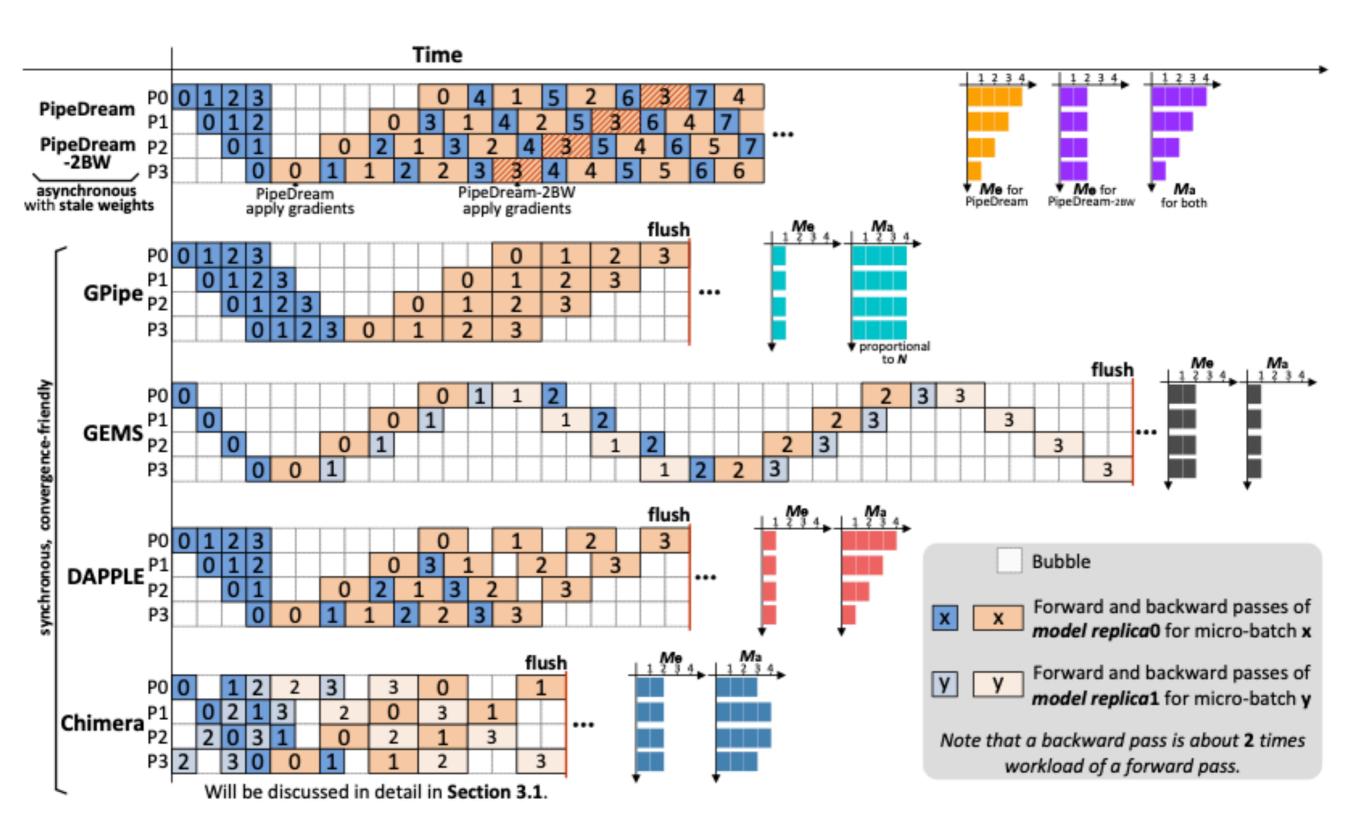




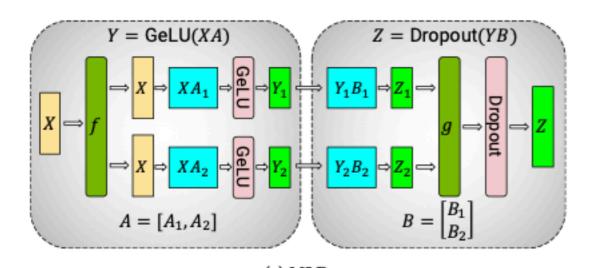
Reduce time per step by partitioning

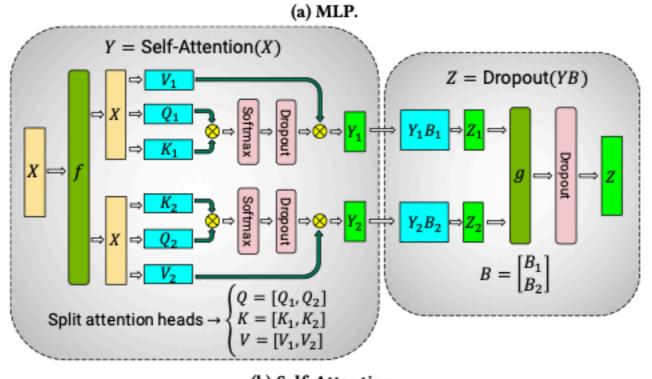
Reduce number of steps by partitioning

Pipeline Parallel



Tensor Parallel

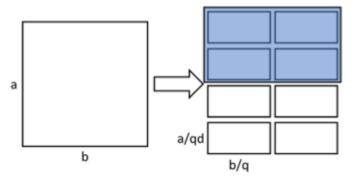




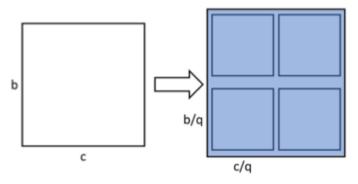
(b) Self-Attention.

Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM https://arxiv.org/abs/2104.04473

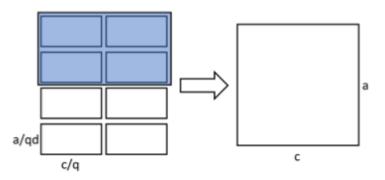
Apply SUMMA to Attention Layer



(a) Partition of matrix A

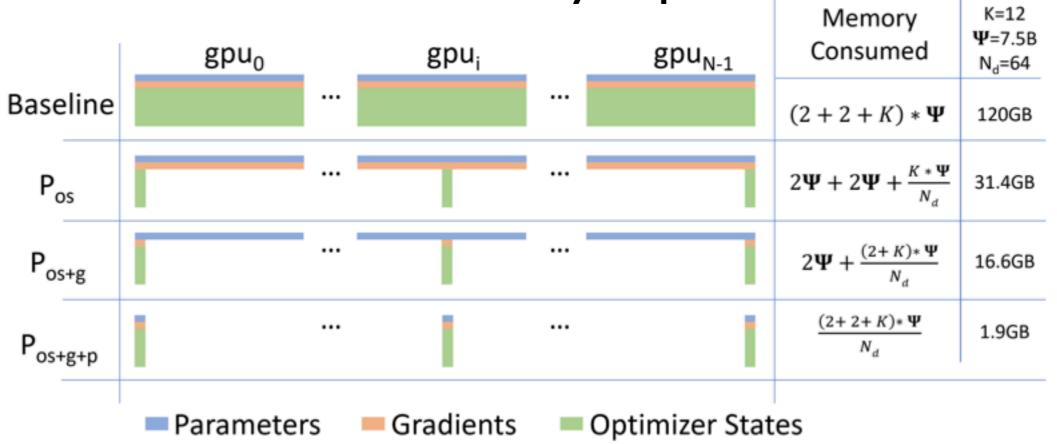


(b) Partition of matrix B



(c) Combination of matrix C

Tesseract: Parallelize the Tensor Parallelism Efficiently https://arxiv.org/abs/2105.14500 Zero Redundancy Optimizer



ReduceScatter

Gradients

AllGather **Parameters** and

States

Optimizer

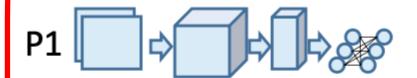
Optimizer + Grad Parameters Name (devices/partitioned) (devices/partitioned) Data parallel [GPU] / X [GPU] / X ZeRO 2 [GPU] / 🗸 [GPU] / X ZeRO-Offload [CPU,GPU] / < [GPU] / X 3D Parallelism [GPU] / < [GPU] / 🗸 ZeRO 3 [GPU] / < [GPU] / 🗸 ZeRO-Inf-CPU [CPU, GPU] / </ [CPU,GPU] / 🗸 ZeRO-Inf-NVMe [NVMe,CPU,GPU] / V [NVMe,CPU,GPU] / V

ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning, https://arxiv.org/abs/2104.07857

Megatron-DeepSpeed

https://github.com/microsoft/Megatron-DeepSpeed

Data Parallel (DP)



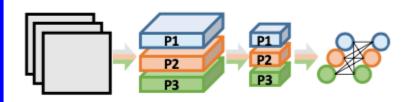
Distributed Data

Redundant Model

AllReduce Gradients

Large batch problem

Tensor Parallel (TP)
or
ZeRO/FSDP



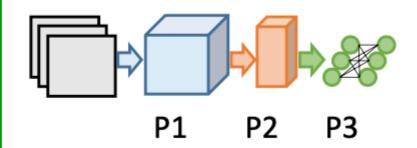
Redundant Data

Distributed Model

AllReduce Activations or AllGather Parameters

Frequent Communication

Pipeline Parallel (PP)



Redundant Data

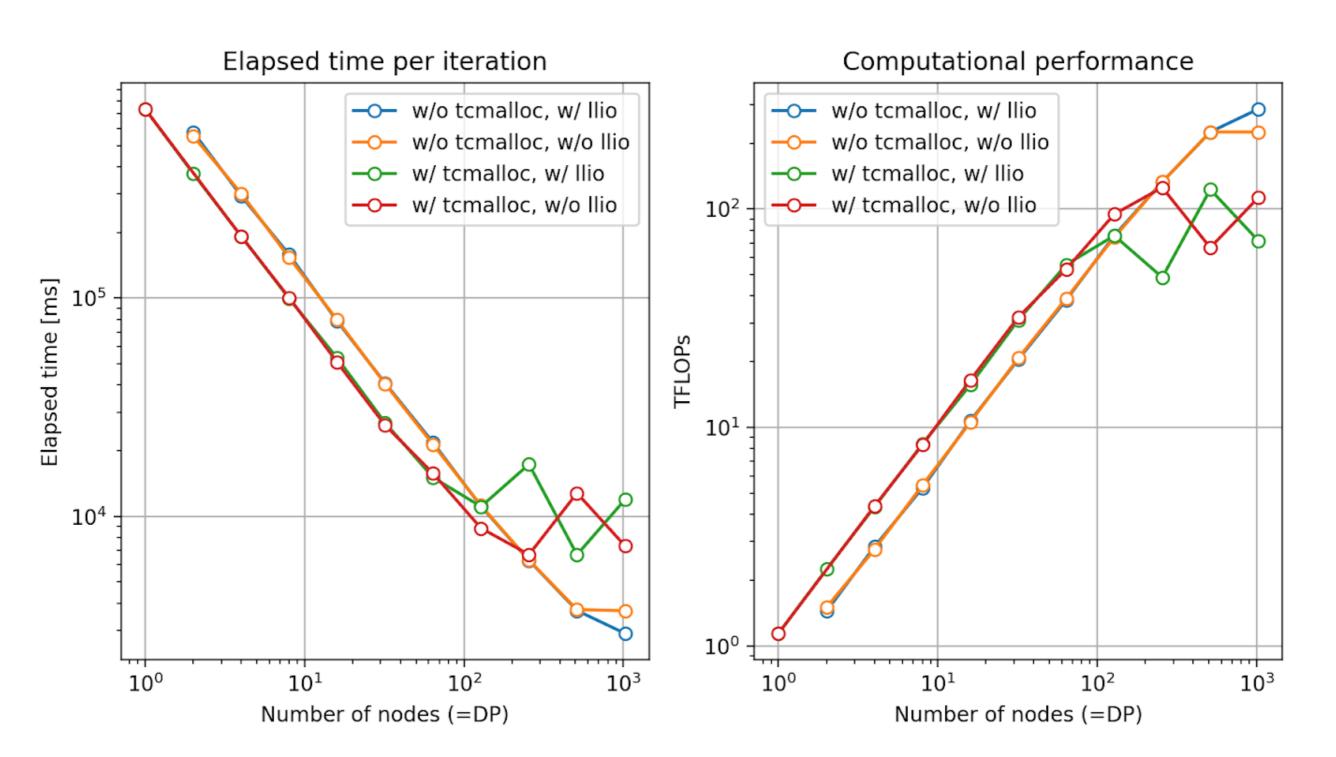
Distributed Model

SendRecv Activations

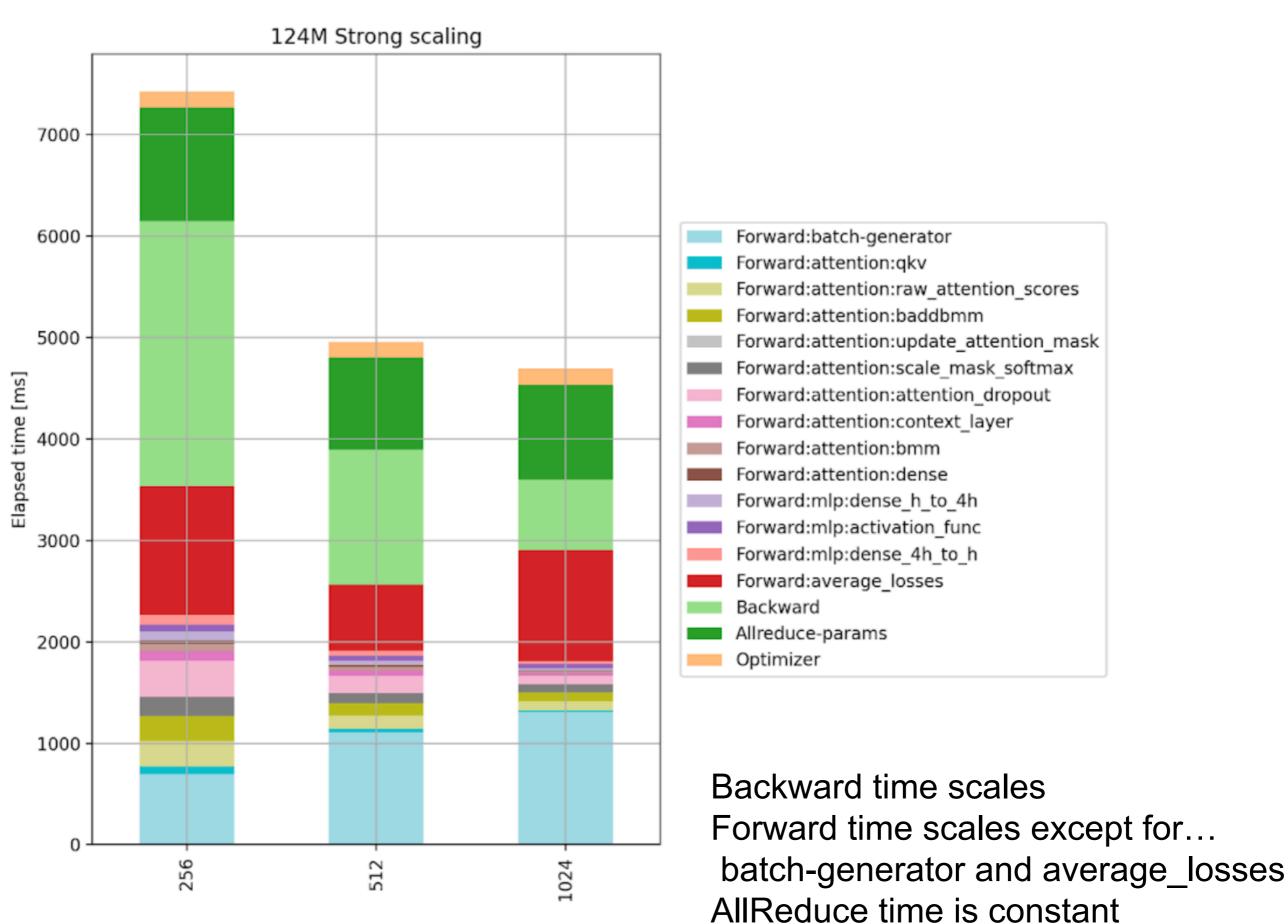
Pipeline bubble

Strong Scalability of Data Parallel

sequence-length=1024 per-cpu-batchsize=1, global-batch-size=1024 gradient-accumulation-steps=1024/#nodes #parameters=**124M**

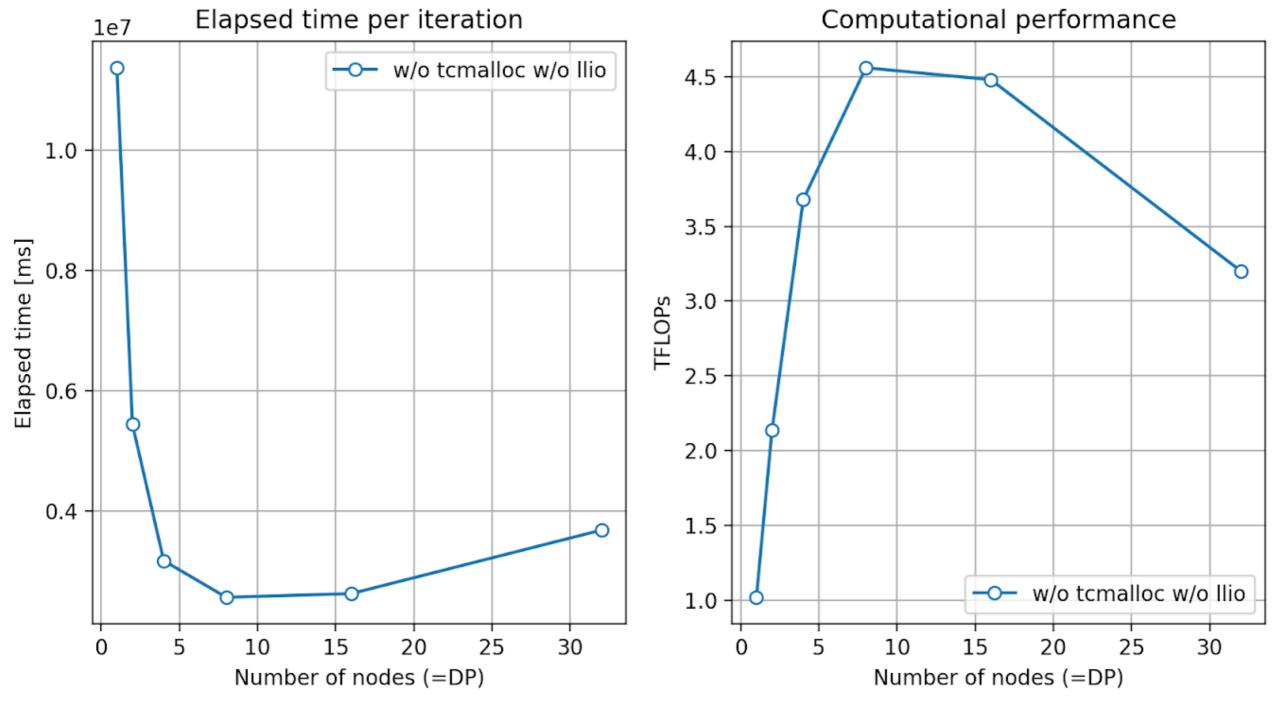


Breakdown of Data Parallel



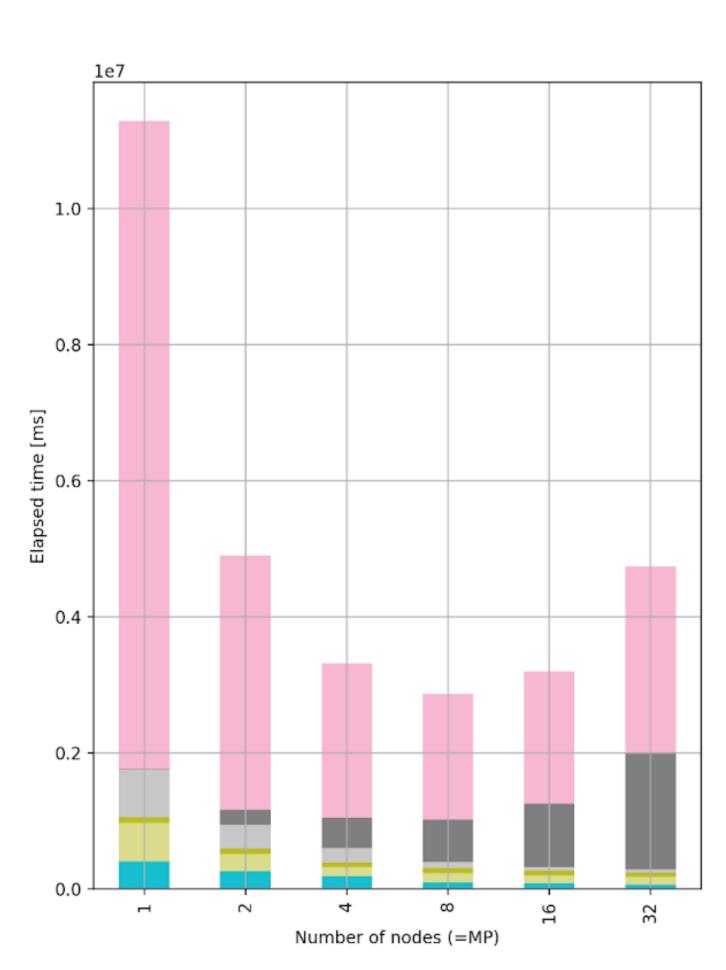
Model Parallel

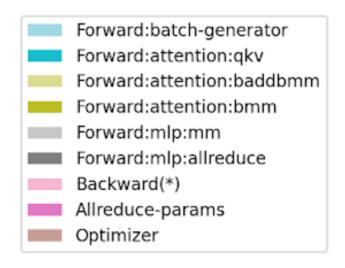
sequence-length=1024
per-cpu-batchsize=1024, global-batch-size=1024
gradient-accumulation-steps=1
#parameters=1.3B



Only scales up to 8 nodes at the moment

Breakdown of Model Parallel





Backward time scales until 8 nodes Forward time scales well AllReduce time increases rapidly

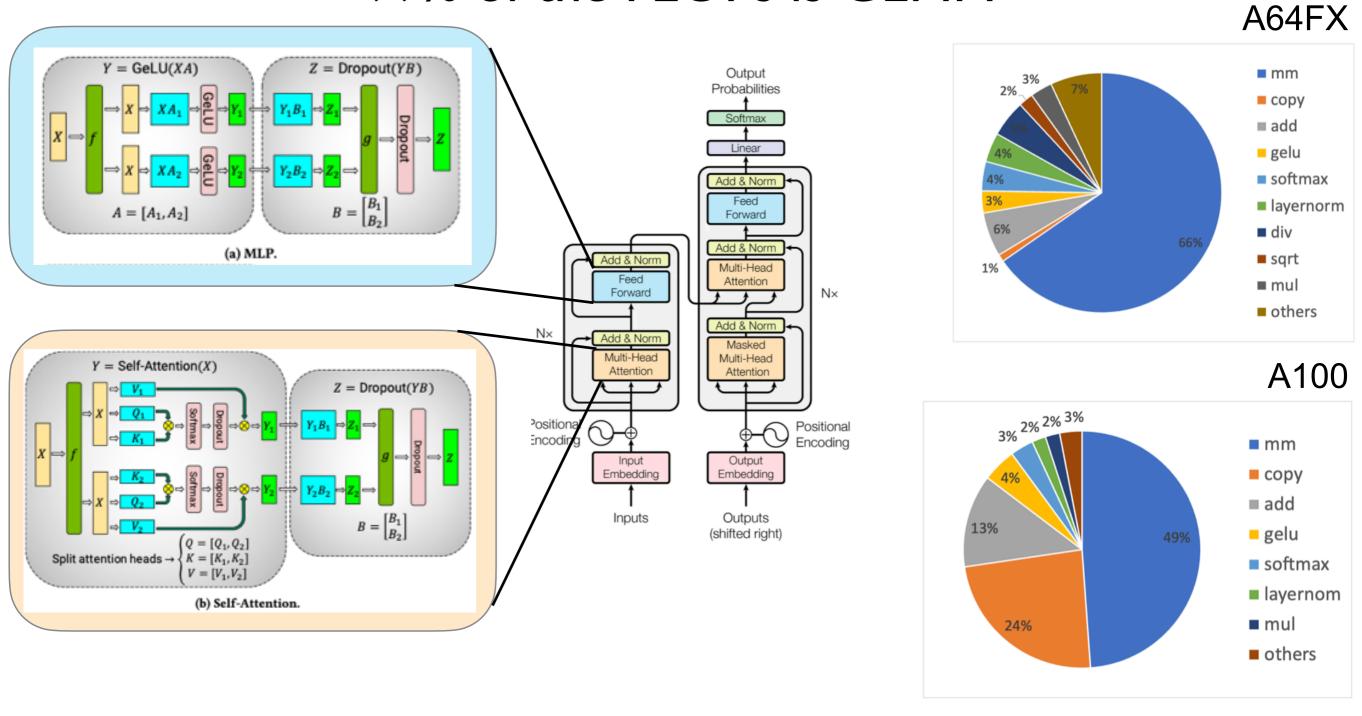
FLOPs Achieved on 1.3B Model

sequence-length=1024
per-cpu-batchsize=1, global-batch-size=1024
gradient-accumulation-steps=1024/#DP
#parameters=1.3B

# CPUs	# DP	# MP	Achieved teraFLOPs per CPU	Percenta ge of Theoretic al Peak FLOPS	Aggregated petaFLOPs per System	Equivalence to # of A100s (compared to 1.7B set-up)
1	1	1	0.99	16%	0.001	0.01
4	1	4	0.86	14%	0.003	0.02
64	16	4	0.84	14%	0.053	0.38
256	64	4	0.79	13%	0.198	1.44
1024	256	4	0.59	10%	0.590	4.31
2048	512	4	0.49	8%	0.980	7.15
4096	1024	4	0.41	7%	1.640	11.97

We are only getting around 10% of the theoretical peak of A64fx at the moment

99% of the FLOPs is GEMM



Currently uses batched GEMM implementation by Daichi Mukunoki

→ Achieves 2 TFLOPs (FP32) on a single A64FX

https://www.r-ccs.riken.jp/labs/lpnctrt/projects/batchedblas/index.html

Du Wu and Mohammed Wahib are also working on a faster version

Summary and Outlook

Fugaku:

```
FP32 6.76TFLOP/s \times 158,976 = 1.07 EFLOP/s (theoretical peak)
```

GPT-4: 328 days x 10

GPT-3.5: 32 days x 10

GPT-3: 3.3 days x 10

Actual Performance

HPC tasks

- Optimizing batched GEMM to scale across CMGs
- Develop techniques to enable FP16 training
- Optimize non-GEMM operations on A64FX
- Reduce communication overhead

NLP tasks

- Collecting, downloading, and cleaning large multilingual corpa
- Discuss legal issues with lawyers https://storialaw.jp/blog/9239
- New models appearing every week: Alpaca, LLaMA, RWKV https://github.com/Hannibal046/Awesome-LLM
- Reinforcement learning with human feedback (RLHF)

Reference on the NLP side: Slides by Naoaki Okazaki https://speakerdeck.com/chokkan/20230327_riken_llm