格子場の量子論のシミュレーションに 向けた機械学習手法の開発

大阪国際工科専門職大学 助教

akio_at_yukawa.kyoto-u.ac.jp

MLPhys Foundation of "Machine Learning Physics" Grant-in-Aid for Transformative Research Areas (A)

Outline

- 自己紹介
- 素粒子物理学とは?
- 格子QCDとその目的・問題点
- 理論: ニューラルネットを用いたQCD
- コード: QCD+MLのためのコード開発
- これからの展望

自己紹介: 富谷昭夫 素粒子物理 + 機械学習

研究分野 素粒子理論の数値計算が専門の物理屋 機械学習をつかって計算できることを増やしたい

主な論文 <u>https://scholar.google.co.jp/citations?user=LKVqy wAAAAJ</u>

Detection of phase transition via convolutional neural networks

Journal of the Physical Society of Japan 86 (6), 063001 ニューラルネットを使った相転移検出

Digital quantum simulation of the schwinger model with topological term via adiabatic state proparation

state preparation									
B Chakraborty, M Honda, T Izubuchi, Y Kikuchi, A Tomiya									
arXiv preprint arXiv:2001.00485									

量子コンピュータで 場の理論計算

略歴

- :大阪大学にて博士号取得(素粒子理論) 2015 2015 - 2018: 華中師範大学・ポスドク (中国、武漢) 2018 - 2021: 理研/BNL・ポスドク (米国、NY)
- :大阪国際工科専門職大学・テニュア助教 2021 -

科研費

学術変革A 計画班A01代表

MLPhys Foundation of "Machine Learning Physics" Grant-in-Aid for Transformative Research Areas (A)

その他量子計算等

その他:

Deep Learning and physics (セミナー)運営 シン仮面ライダーの監修をしました

(素粒子理論) 物理学とは?

理論物理学 物理学の大きさによる分類

ざっくりとしたスケール

あと宇宙も研究対象。

素粒子物理学 期待値を通じて「この世の確率分布」を探る

- •素粒子物理 = 相対性理論と量子力学を使い、<u>物質と力の根源を探る</u>
- 量子力学:予測可能なのは期待値のみ
- 物理量O (たとえば粒子の質量) の量子力学的な期待値の計算

$$\underbrace{\mathbb{E}[O]}_{\mathbb{I}[O]} = \int \cdots \int (d\phi_1 d\phi_2 \cdots) O(\phi_1, \phi_2, \cdots) \underbrace{p(\phi_1, \phi_2, \cdots)}_{\text{確率分布}(知りたい)}$$

ワークフロー (数年~数10年規模):
いくつかのOでE[*O*]を測定(実験家)
→もっともらしい *p*(*φ*₁…)を推定(理論家)
→ *p*(*φ*₁…)と*O*' でE[*O*']を計算(理論家)
→*p*(*φ*₁…)の予想が正しいかE[*O*']を測定してチェック(実験家)

素粒子物理学

- 10⁻¹⁹ m 以上の大きさの実験を、**ほぼ**説明可能な確率分布p を知っている
- ・ (10⁻¹⁹ m以上は、宇宙の歴史だと宇宙誕生後10⁻⁵ 秒以降に相当)

•
$$p = \frac{1}{Z} \exp(-S)$$
, (この確率分布で期待値 -> 実験・観測と比較)
• $S = \int d^4x \left[\bar{\psi} D \psi(x) + \frac{1}{4} \sum_{a} F^{(a)}_{\mu\nu} F^{(a)}_{\mu\nu} + \phi \bar{\psi} y \psi(x) + \phi^{\dagger} D^2 \phi(x) + V(\phi) \right]$

「神の数式」(by NHK スペシャル)

- 10⁻¹⁹mよりミクロの世界(or 宇宙誕生後10⁻⁵ 秒以前)
 - → 実験と計算がまだまだ必要 たとえば、ILC やCERNのLHC、宇宙観測 etc
 - → また本当に上記の確率分布で良いのかは精密計算が必要

素粒子理論での従来法と問題

• 10⁻¹⁹m 以上の大きさの実験を、ほぼ説明可能な確率分布p を知っている

•
$$p = \frac{1}{Z} \exp(-S)$$
, (この確率分布で期待値 -> 実験・観測と比較)
• $S = \int d^4x \left[\bar{\psi} D \psi(x) + \frac{1}{4} \sum_{a} F^{(a)}_{\mu\nu} F^{(a)}_{\mu\nu} + \phi \bar{\psi} y \psi(x) + \phi^{\dagger} D^2 \phi(x) + V(\phi) \right]$

• 期待値の計算は下記とほぼ同じ (1万次元積分, g は定数)

$$\int d\phi_1 \int d\phi_2 \cdots \int d\phi_{10000} \exp\left[-\sum_i \left(\phi_i^2 + g\phi_i^4\right)\right]$$

- 不定積分は出来ない。計算手法は以下の2つ。
 - 手法1:gでテイラー展開 (gが大きい時に破綻)
 - 手法2: 数值積分!

既存手法の成功 期待値の計算、数値積分も難しい

積分したい式 (おもちゃ模型)

$$\int d\phi_1 \int d\phi_2 \cdots \int d\phi_{10000} \exp\left[-\sum_i (\phi_i^2 + g\phi_i^4)\right]$$

ただの多重積分、ただし10,000次元以上(多変数積分)。 台形法などで誤差を抑えて計算するには現在のスパコンでも100億年以上 かかってしまう。

既存手法の成功 なぜ普通に数値積分できない?

2次元積分でみてみる $\mathbb{E}[O] = \frac{1}{Z} \int dx_1 dx_2 e^{-\frac{1}{2}(x_1^2 + x_2^2 + x_1 x_2)} O[x_1, x_2]$ Zは $\mathbb{E}[1] = 1$ とする規格化定数 $P(x_1, x_2) = \frac{1}{Z} e^{-\frac{1}{2}(x_1^2 + x_2^2 + x_1 x_2)}$

ほとんど至る所で確率が0。 賽の目に切って数値積分だと、無駄が多い。 誤差は、積分の次元で支配される。 (マルコフ連鎖) モンテカルロを使いましょう。

格子QCDとその目的・問題点

格子QCD = 強い核力を第一原理的に計算

$$\begin{aligned} & A_{\mu}(x) \in \mathrm{su}(3) \\ & L_{QCD} = -\frac{1}{4} \mathrm{tr} \ F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (\mathrm{i}\partial - gA - m) \psi \\ & F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} - \mathrm{i}g[A_{\mu}, A_{\nu}] \\ & |\Omega(t)\rangle = \mathrm{e}^{-\mathrm{i}\hat{H}_{QCD}t} |\Omega\rangle \quad \leftarrow \mathbf{con i} \mathbf{h} \mathbf{con} \mathbf{b} \mathbf{con} \end{aligned}$$

- 量子電磁気学の拡張 (ゲージ群が非可換)
- 陽子中性子等の内部を第一原理・量子論的に記述
- 宇宙の歴史やミクロ世界の理解に重要
- 弱結合展開での計算以外の部分がessential
- 格子QCD = 離散時空上のQCD
 - 数学的に厳密な定式化、連続極限でQCD
 - 数値計算できる! (が大変)

格子QCD = 強い核力を第一原理的に計算

格子QCD = 離散時空上のQCD (~1万粒子程度のdofの多粒子の量子力学) 格子QCDを経路積分量子化 = 10万次元程度の**多重積分**で期待値を計算可能

 $\langle O \rangle = \int \prod_{n,\mu} dU_{\mu}(n) P_{\text{QCD}}[U] O[U] \qquad P_{\text{QCD}}[U] \propto e^{-S_{g}[U] - S_{q}[U]}$

2変数での例
$$\langle O \rangle = \int dx_1 dx_2 P(x_1, x_2) O(x_1, x_2)$$

 $P(x_1, x_2) \propto e^{-\frac{1}{2}(x_1^2 + x_2^2 + x_1 x_2)}$

ほとんど至る所で確率が0。 台形則等のニュートンコーツ式の数値積分だと、 誤差は、積分の次元で支配

(マルコフ連鎖) モンテカルロで積分・期待値を計算

格子QCDとその目的・問題点 マルコフ連鎖モンテカルロで量子論の計算ができる

<u>HMC法(ハイブリッドモンテカルロ法)のステップ</u>

()のステップ $H[x,p] = \frac{1}{2}p_1^2 + \frac{1}{2}p_2^2 + S(x_1,x_2)$ 1. $x = \{x_1, x_2\}$ を用意する 2. $p = \{p_1, p_2\}$ をガウス分布からサンプルする("サイコロを振る") 3. $x = \{x_1, x_2\} \ge p = \{p_1, p_2\}$ を上記のハミルトニアンから出て くる(仮想的な)運動方程式に従って、数値積分し、x', p'を得る 4. $H[x,p] \ge H[x',p']$ を比較し、メトロポリス法を適用し、 × の列を得る

配位(サンプル)をたくさん集めて平均すれば積分したことになる

格子QCDとその目的・問題点 マルコフ連鎖モンテカルロで量子論の計算ができる

<u>HMC法(ハイブリッドモンテカルロ法)のステップ</u>

(美)のステップ $H[x,p] = \frac{1}{2}p_1^2 + \frac{1}{2}p_2^2 + S(x_1, x_2)$ 1. $x = \{x_1, x_2\}$ を用意する 2. $p = \{p_1, p_2\}$ をガウス分布からサンプルする("サイコロを振る") 3. $x = \{x_1, x_2\} \ge p = \{p_1, p_2\}$ を上記のハミルトニアンから出て くる(仮想的な)運動方程式に従って、数値積分し、x', p'を得る 4. $H[x,p] \ge H[x',p']$ を比較し、メトロポリス法を適用し、 × の列を得る

$$\begin{split} \langle O \rangle &= \frac{1}{N_{\text{sample}}} \sum_{i=1}^{N_{\text{sample}}} O[x^{(i)}] + \frac{\text{const}}{\sqrt{N_{\text{sample}}}} \\ \text{格子QCDの経路積分も、ただの10^5次元多重積分} \\ \langle O \rangle_{a,L} &= \frac{1}{Z} \int \cdots \int \prod_{x \in \mathbb{Z}/L} \prod_{y \in \mathbb{Z}/L} \prod_{z \in \mathbb{Z}/L} \prod_{u=1}^{4} dU_{\mu}(x, y, z, t) e^{-S(U)} O[U] \end{split}$$

物凄く頑張るとHMCで格子QCDの期待値を評価できる。

格子QCDの計算はスパコンで! (1980年~)

<u>スパコンで計算して何がわかるのか?</u>

- 陽子/中性子の仲間(ハドロン)の質量
- 原子核同士の引力/斥力の様子 (星の生まれて死ぬまでを理解するのに必要)
- 高温での陽子/中性子等の溶解の様子 (宇宙の歴史に関わる)
- ダークマターの候補の性質 (実験で見つけるには性質を知っておく必要あり)
- 陽子/中性子内のクォークの様子
- 手計算で計算できない各種係数 (素粒子標準理論と実験との整合性チェックに必要) などなど...

格子QCDとその目的・問題点 色々出来てても問題もある。機械学習?

<u>機械学習で解決したい問題</u>

- (いろんな意味で) 計算量の削減。大きな体積、細かい格子間隔での計算をしたい - 符号問題の解決 (今日は触れません)
- 格子QCDに機械学習を用いる縛り
 - (マルコフ連鎖モンテカルロ法としての)厳密性。機械学習は近似的
 - ゲージ対称性、フェルミオン自由度(量子論特有)。機械学習は古典データ
 - コード■。ニューラルネット(Python/Jupyter)、格子QCD(C、C++、Fortran)...

ニューラルネットを用いたQCD

理論:ニューラルネットを用いたQCD Akio Tomiya フローベースアルゴリズム: 確率分布の簡単化

80年代や2010年ぐらいから、幾度と積分測度を簡単な物にできないか議論されてきた

$$\mathbb{E}[O] = \frac{1}{Z} \int \cdots \int \prod_{x=1}^{100} \prod_{y=1}^{100} \prod_{z=1}^{100} \prod_{t=1}^{100} d\phi_{x,y,z,t} e^{-S(\phi)} O[\phi_{x,y,z,t}]$$

 $ilde{\phi} = \mathscr{F}(\phi)$ フロー方程式 (変数変換)

もし $S(\mathcal{F}(\phi)) - \ln \det(\text{Jacobian}) = \phi^2$ ならば、

$$\mathbb{E}[O] = \frac{1}{Z} \int \cdots \int \prod_{x=1}^{100} \prod_{y=1}^{100} \prod_{z=1}^{100} \prod_{t=1}^{100} d\tilde{\phi} O[\mathscr{F}_{\tau}(\phi)] e^{-\tilde{\phi}^2} \det\left(\frac{\partial \phi}{\partial \tilde{\phi}}\right)$$

ガウス積分なので簡単そう。

適当にやるとヤコビアンは密になってしまい、現実的に計算できない

理論:ニューラルネットを用いたQCD Akio Tomiya ニューラルネットでフロー方程式をミミックする

FIG. 1: In (a), a normalizing flow is shown transforming samples z from a prior distribution r(z) to samples ϕ distributed according to $\tilde{p}_f(\phi)$. The mapping $f^{-1}(z)$ is constructed by composing inverse coupling layers g_i^{-1} as defined in Eq. (10) in terms of neural networks s_i and t_i and shown diagrammatically in (b). By optimizing the neural networks within each coupling layer, $\tilde{p}_f(\phi)$ can be made to approximate a distribution of interest, $p(\phi)$.

ニューラルネットで<u>可逆な</u>変数変換を再現

「自明な理論 ← → 相互作用のある理論」を結ぶ1:1写像

自明な理論(各点独立なガウス分布)でサンプルし、場の理論の配位に変換

Normalizing flow(正規化フロー) という仕組みでできる

ヤコビアンも簡単に計算可能!

arxiv 1904.12072, 2003.06413, 2008.05456

理論:ニューラルネットを用いたQCD Akio Tomiya ゲージ対称性を取り扱えるニューラルネット?

- 非可換ゲージ対称性: QCDの指導原理
 - $A_{\mu}(x) \rightarrow G(x)A_{\mu}(x)G^{-1}(x) G(x)\partial_{\mu}G^{-1}(x)$ の下で経路積分不変
 - これがないと量子論として矛盾する
 - ゲージ場 = リー群(ユニタリー行列)の場
- 機械学習で出てくるデータ
 - 大域的対称性は考慮できる(畳み込み、同変性)
 - ニューラルネットは実数を処理する処理系
- どうやる?

理論:ニューラルネットを用いたQCD ゲージ対称性を保ちながらのデータ処理

- いろんな手法でニューラルネットにゲージ対称性を担保できる
- ゲージ同変ネット (Maximal torus), DeepMind, MIT+ arXiv: 2008.05456
 - リンクごとに対角化、U(1)の位相をニューラルネットへ
 - ゲージ変換とニューラルネットの処理は交換(同変)
- ゲージ共変ネット (trainable smearing) AT, Y. Nagai arXiv: 2103.11965
 - スメアリングの係数がbackprop で決定できる事を発見
 - Stout smearing *O*Neural ODE = Gradient flow !
 - ゲージ変換に対して共変的な構成
- 他にも実現あり

理論:ニューラルネットを用いたQCD Akio Tomiya MITグループによるFull QCDでの結果

- Flow based での、Full QCD in 4dの結果! HMCと無矛盾
- 超えるべき壁: 計算速度。Full Python...

• (速度は。。。あとスケーリングも気になる)

- ゲージ対称性を保った情報処理(擬フェルミオン場を入力し、 擬フェルミオン場を出力する)をゲージ対称性を保ったニューラルネットで
 - ディラック演算子も、uを入力、Dを返す情報処理
- ニューラルネットで、前処理行列の処理を近似。
- 反復を10倍程度の改善(ただし実際の実行速度はPython律速?)

https://arxiv.org/abs/2302.05419, C. Lehner, and T. Wettig

コード: QCD+MLのためのコード開発 (2言語問題を解決する)

プログラミングにおける2言語問題を教えて下さい。何が問題なのでしょうか。

\$

プログラミングにおける「2言語問題」(Two Language Problem) は、主にデータ分析や科学計算 △ ▽ などの領域でよく見られる現象で、プログラマがパフォーマンスと柔軟性の両方を求めて、異なる プログラミング言語を使い分けることを指します。一般的には、1つの言語が高性能で低レベルな 処理に適している一方で、もう1つの言語が柔軟性や生産性に優れているために発生します。

例えば、C++やFortranは高速な数値計算に優れていますが、プログラムの開発やデバッグには時 間がかかることがあります。一方、PythonやRなどのスクリプト言語は開発やデバッグが容易で、 様々なライブラリやツールが利用できますが、パフォーマンス面ではC++やFortranに劣ることが 多いです。

2言語問題が問題とされる理由は以下の通りです:

- 1. 学習コスト:異なる言語を習得し、使いこなすことに時間と労力が必要です。
- 2.保守性:複数の言語で書かれたコードは、統一されたコードベースよりも保守やデバッグが難しくなることがあります。
- インターフェースの複雑さ:異なる言語間でデータや機能を共有する際には、インターフェー スやラッパーを用意する必要があります。これにより、システムの複雑さが増すことがありま す。

近年、この問題に対処するために、Juliaなどの新しいプログラミング言語が登場しています。 Juliaは高性能な数値計算が可能でありながら、Pythonのような柔軟性や開発効率を提供すること を目指して設計されており、2言語問題の緩和に寄与しています。

29

AK

コード: QCD+MLのためのコード開発 Akio Tomiya QCD+MLにおける2言語問題

- 格子QCD: 1億行、1億列の疎行列・線形方程式を何万回も解く
 - Massiveな並列化をスパコンの上でやりたい
 - GPUを使うとしてもマルチGPU前提ですよね...MPIバンザイ
 - C++かFortran 並のスピードが必要
- 機械学習(ニューラルネット): Pythonがデファクトスタンダード。100倍遅い。
 - Jupyter Notebookで実験したい。GPU化もほぼ自動で。
 - TensorFlow, PyTorch等でならコーディング出来る。Auto-Grad が無いと...
 - 複素数?頑張れば。
- C++とPythonの両方のコーディングが必要???
- Julia なら自然に両立できるんです

コード: QCD+MLのためのコード開発 Akio Tomiya Speed of Julia ~ Clang

1.Open source scientific language (Just in time compiler/LLVM backend)
 2.Fast as C/Fortran (faster sometimes), Practical as Python
 3.Machine learning friendly

	Compiler	Benchmark (sec) single core	Туре	Parallelism	GPU	Pros	Cons👎	Column, row	Note
Julia (1.8)	JIT, LLVM	0.0014	Dynamic & Static	MPI, others	CUDA	Fast Practical ML feiendly	not major	column- major	
С	Clang (LLVM)	0.0033	Static	MPI, others	CUDA	Fast	Long codes	row-major	
Python +Numba	(CPython) JIT, LLVM	0.0131	Dynamic	Available	Numba- CUDA	Practical ML feiendly	Not fully supported	row-major (Numpy)	(Rosetta2 is used in benchmark)

C and Julia have similar speed

Benchmarks are performed on m1 mac mini (similar tendency on Xeon) Benchmark: Multiplications for 12dim vector and 12x12 complex matrix for 10^4 times (repeated 10 times)

コード: QCD+MLのためのコード開発 Akio Tomiya Code comparison (skip)

- Complex matrix (12x12) times complex vector (d=12)
 - One set= 10^4 times, and repeated 10 times and averaged
- Code of Julia looks like Python (short, simple) but fast as C Julia: 0.0014 (sec), C: 0.0033 (sec). Single core performance is similar

コード: QCD+MLのためのコード開発 Akio Tomiya

LLVM = common backend for making binaries on multiple architectures

https://www.fujitsu.com/jp/about/businesspolicy/tech/fugaku/ https://ja.wikipedia.org/wiki/Apple_M1 https://ja.wikipedia.org/wiki/Ryzen

https://ja.wikipedia.org/wiki/Xeon https://gigazine.net/news/20200623-japan-fugaku-fastest-supercomput

See: https://en.wikipedia.org/wiki/LLVM and related pages

コード: QCD+MLのためのコード開 Wilson inversion / MPI parallel, Strong Scaling A^{kin} Tormiva A^{Kin} Tormiva

Tested on Yukawa-21@YITP

良さそうに見える もうちょっとコントリビューターが必要

Neurips Workshop (https://ml4physicalsciences.github.io/2022/) で関連研究も発表

QCD+MLのための理論とコード ひとまず出来ることはわかった。やるべきことも。

- 理論サイド: Flow based が良さそう。ただ他の可能性も探るべき。
 - 4d SU(3), Full QCDには(ようやく)手が届いた。
 - ソルバーへの利用もある。
 - ただし実装・実際の計算速度は別問題。まだまだ改善しないと。
- コードサイド: 2言語問題 = 格子QCDとニューラルネットのコーディング
 - Julia は2言語問題を自然に解決できる
 - 格子QCDのコードとFlowのJulia コードを作りました!
 - 人の手が足りていません。
- まだまだこれから...。

Applications

Configuration generation with machine learning is developing

Configuration generation for 2d scalar

<u>Restricted Boltzmann machine + HMC: 2d scalar</u> A. Tanaka, AT 2017 The first challenge, machine learning + configuration generation. Wrong at critical pt. Not exact.

GAN (Generative adversarial network): 2d scalar

Results look OK. No proof of exactness

Flow based model: 2d scalar, pure U(1), pure SU(N)

Mimicking a trvializing map using a neural net which is reversible and has tractable Jacobian. Exact algorithm, no dynamical fermions. SU(N) is treated with diagonalization.

L2HMC for 2d U(1) (Sam Foreman+ 2021)

Self-learning Monte Carlo (SLMC) for lattice QCD Non-abelian gauge theory with dynamical fermion in 4d

Using gauge invariant action with linear regression Exact. Costly (Diagonalize Dirac operator)

Self-learning Hybrid Monte Carlo for lattice QCD (SLHMC, This talk)

Non-abelian gauge theory with dynamical fermion in 4d arxiv 2103.1⁻ Using covariant neural network to parametrize the gauge invariant action Exact

J. Pawlowski+ 2018 G. Endrodi+ 2018

arxiv 2010.11900 Y. Nagai, AT, A. Tanaka

arxiv 2103.11965 Y. Nagai, AT

40

Benchmark Why Julia? (My personal opinion)

[1] https://akio-tomiya.github.io/julia_in_physics/ [2] <u>https://qr.ae/prgSG5</u>

- Modern scientific programming language
- Easy to make codes. Fast as C/C++ (Julia& C use LLVM)
- Fewer compiling/dependency issues.
- Many people are potentially interested in. (More than 400 people registered to "Julia in physics 2022 online workshop" [1]). 4,923 public repo on Github
- No two Language problem. "The fact that while the users are programming in a high-level language such as R and Python, the performance-critical parts have to be rewritten in C/C++ for performance". [2]
 - Neural network friendly (Flux.jl). Tensor networks also (iTensor.jl).
- Works on/with
 - Xeon, Radeon/Apple silicon/<u>A64FX</u>
 - MPI, GPU

Akio Tomiya

Our lattice QCD codes are constructed by following repositories

