Computational

Science- pﬂ

\_’ Alliance I L_dn_/_/ ‘
Eﬁ? The University of Tokyo CBSM?2

TOVILERY NT—TIC KD IBEmREHEE
I IR A D it FE

SKIE, JST 2 EHNTF RARER

\ml



Contents

+ Huge data in physics
+ Information compression
+ Basics: singular value decomposition

- Tensor network renormalization

ensor network quantum states
- Applications

- Summary and outlook



Contents

+ Huge data in physics
+ Information compression
» Basics: singular value decomposition

- Tensor network renormalization

ensor network quantum states
- Applications

- Summary and outlook



Huge data In physics

Many-body problems in physics

+ Celestial movement

- Gases, Liquids

- Molecules, Polymers (eg. Proteins), ...

+ Electrons in molecules and solids

+ Elemental particles (Quantum Chromo Dynamics)

In these problems, "systems” contain huge degrees of freedoms:

6/N-dimensional phase space for classical mechanics

O(eM)-dimensional Hilbert space for guantum systems



(Classical) statistical mechanics

Canonical ensemble: ' State (e.9. {51, 52,51} )
P(I") : Probability to appear state T
1
P(T) x e P7HI) B8 = —— : Inverse temperature
kT

H : Hamiltonian (Energy)

Partition function (4 HcE9%0) 7 _ Z o BH(T)
I

= Normalization factor of the canonical ensemble

Relation to the free energy in thermodynamics
F = —kBT In /4

If we can calculate Z, we can easily estimate thermodynamic properties.



—Xpectation value in canonical ensemble

Expectation value of O: (0) = % Z O(I)e PRI
I

Expectation value of physical quantity
«—Macroscopic physical guantities observed in thermodynamics

We can calculate thermodynamic quantities form microscopic model,
If we can calculate the sum of all states

Real problems : > is too huge to calculate exactly T ~ eV
I’

(Even if we use super computer)

» Standard procedures: MD or MC samplings



Quantum systems

Quantum system: governed by Schrodinger equation

.0

H :Hamiltonian (Energy)

Inner product:

W) :Wave function (state vector) (a), b)) = (bla)

Nature: Elementary particles, e.qg. electrons, obey quantum mechanics.

HIW) = E|W)

Energy

» Static problems: Time-independent Schrodinger equation

= Eigenvalue problem



Quantum many-body systems

Example of qguantum system: Array of quantum bits

1 bit @® A guantum bit is represented by two basis vectors.

‘O>7‘1> or (‘T>7’\L>)

2 bits @—@ The Hilbert space is spanned by four basis vectors.

0) ®10),10) @ [1), 1) @ [0), [1) @ [1)
Simple notation: |00), [01),|10), [11)

mp V)= D Caplos)

a,$=0,1 Ce. 5 -cOMplex number

The Hamiltonian for 2 bits system can be represented in these bases.
/Ho,o;o,o Hoo0.01 Hoo:1,0 H0,0;1,1\

Hoi1.00 Ho1.01 Hoi1i1o0 Hoia
H —
Hi000 Hio001 Hio10 Hio11

\H1,1;0,0 Hi1.01 Hiia,0 H1,1;1,1)
Matrix element: Ha .03 = (aS|H|a'5")




Quantum many-body systems

Example of qguantum system: Array of quantum bits

O 0 00O

. | | .
N bits: Dimension of the Hilbert space = 2 oo
» Hamiltonian is 2V x 2V matrix G G G A ¢
O 0 0 0O
0 0 0 0

Need to solve eigenvalue problem of huge matrix!

In physics,

- We often interested in the "ground state" (smallest eigenvalue)
EHEIRRE
m) \We can concentrate to a special state.

- Typical system only has "short range” interactions

®) Hamiltonian matrix becomes sparse.



Information compression by tensor network

How can we treat and calculate such eV data in numerics”?

One of the methods is an approximate information
compression by tensor network representations

Calculation of the partition function:

_BH(T) +Tensor network representation of Z
Z = Z € - Approximated contraction of it
I'

trough a coarse graining ¢
-
L

Eigen value problem:

-+ Tensor network representation of
H‘\I}> — E‘\Ij> » an eigenvector

- Variational optimization of it

- N
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Singular value decomposition (SV

Singular value decomposition (SVD):

D)

Any matrices are uniquely decomposed as A — U Z V.“

A: M x N / AN
A.eC U:MxM V:NXxN
tJ Unitary Unitary
D 0 _
> = —T-X—T rx(N—r) r=rank(A)
O(M'—T)Xr O(M—T)XN—T'

s (a1 \ Diagonal matrix with A
- 02 non-negative real elements
T o1 >09> >0, >0
\_ \ Or / Singular values y




Amount of data in SV

A: M XN

D representation

A = UEVT — U ( E’I“X’P OTX(N—T) > VT
O(M—T)Xfr O(M—’P)XN—’P

U:(617627'°'76M)
neglect zero T 7t (o= '
singular values = UXipsrV V = (v1, v2, ,UN)

U:Mxr,Vi:rxN )
r \ U: (ﬁlaﬁéa 71_’;7“)
If rank(4) is much smaller than M and N, V = (5, 5 5)

r<< M, N

we can reduce the data to represent A.
_ (At this stage, no data loss) Y




Low rank approximation by SVD

Consider a matrix obtained by neglecting smaller singular values

A=U%,. VI P A=USuuV’  (k<n

Yrwr = diag(oy,09,...,0) Yexk = diag(o1,02,...,0%)
U = (i, @, . . ., i) U = (i, s, . .. , W)
V = (01, ,...,0) V = (U1, 02,...,0)
01> 09> >0, >0 Keep the largest k singular values

(and corresponding singular vectors).

rank(A) =7 rank(A) =k <r
This approximation is one of the best low rank approximation.

min(N,M)
min{HA—BHF:rank(B):k:}:\ Y o2 =[A-Alr
1=k+1




lmage compression: grayscale image

Image: 1024 x 768 pixels

a

rank(A) = 768

Amount of data=786,432

Perform SVD of 4: A = UX VT

» rank(y) approximation
Amount of data=(768 +1024 + 1)xy




lmage compression: grayscale image

Rank: X = 768 x = 100

Data: 786,432 179,300 179,30
(Original)



Scalar, Vector, Matrix, Tensor,...

Scalar: ¢ Number ’
Vector: v; One dimensional array of numbers
Matrix: M;; Two dimensional array of numbers
Tensor: 15 k... Higher dimensional array of numbers

j
Scalar: O-dim. tensor /\

Vector: 1-dim. tensor
Matrix; 2-dim. tensor k

=5

/-
\

/
<



Graphical representations for tensor network
®

| ! o ]
Matrix M: M’L,j +

P
Rl

* n-rank tensor = n-leg object

—

- \Vector UV Vg

- Tensor 1215 5k

When indices are not presented in a graph, it represent a tensor itself.

a:’ T — —’—




Graphical representations for tensor network

Matrix product

Cz',j = (AB)Z’J = ZAi’kBk’j
k

C =AB

Generalization to tensors

Z A’I;,j,()é,ﬁBﬁ,’YC’y,k,Oé

o, 3,7

)
Contraction of a network = Calculation of a lot of multiplications



Low rank approximation: generalization to tensor

Tensor: 1.

y

Naive application of SVD:

7
\

Make a matrix by dividing indices into two parts.

Lijrt — Ly, (k)
Then apply SVD (and low rank approximation).

J
= {voHV—
k

[ J

:I \k

Note: The result depends on the initial mapping to a matrix.
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Tensor network representation of partition function

R AR KRR

Classical Ising model on a chain

L—1
H=—J)» S8

. S1 59 Si Sit1 S1,-15L,
=g =1,-1 T
= | | — —1:¢
Partition function:
7 — Z eBJ 2. SiSit Gransfer matrix .
— 3L TS g, — 65J3z51+1
{9 =41} (EEx1T1) s
L—1
_ Z H eﬂJSiSf,;+1 +1 ‘1
{S;=%x1} =1 T < P’ 6_5‘]> +1
= | —5J BJ i
(& (&
L—1
— Z (T )Sl,SL \ J
S1=+1,8;==+1
>, SL
00000000,
S1=+1,8;==+1




Tensor network representation in two dimension

Classical Ising model on the square lattice

EERE X

H=—J>» S5 L AR A o O
(i) (S = £1=1,]) $449¢4 @
o464

* y—— Z eﬁjzu,ﬂs’isj ’** *"
Tl YEXEE,

We can use a tensor instead of the transfer matrix.

JS1S
65 102 TSlsz * Tensor?

S, S o1 5
oo mp —0—



Tensor network representation in two dimension

eBJ (515245253 +5354+5451) Ag, 5,9.5, A
. A A
S1 2 S So
O
* P 4 4
o O B
S4 S3 S4 53 A A
A A

Partition function = Tensor network of tensor A

Square lattice Ising model—Square lattice tensor network rotating 45 degrees.

*We can construct a tensor network where tensors are on the nodes of original lattice.



Outline of tensor network renormalization

Scaler represented

by L xL tensors

A: DXDXD X[

e e

Corse graining (Renormalization)
into |/ 2 times longer scale.

Approximation

(L *L)/2 tensors

o

A:DXDxDxD

Reduce the number of tensors
keeping their size constant




Recipe of Tensor Renormalization Group (TRG)

M. Levin and C. P. Nave, Phys. Rev. Lett. 99, 120601 (2007)
Z.-C. Gu, M. Levin and X.-G. Wen, Phys. Rev. B 78, 205116 (2008)

1. Decomposition D-rank approximation
Regard a tensor as a matrix by SVD
Ai jok, A(zl) (.k) A(w) (k1)
A: DXDXD XD A D?xD?

0

Approximation



Recipe of Tensor Renormalization Group (TRG)

M. Levin and C. P. Nave, Phys. Rev. Lett. 99, 120601 (2007)
Z.-C. Gu, M. Levin and X.-G. Wen, Phys. Rev. B 78, 205116 (2008)

2. Goarse graining
Contraction of In total, two original

mner iIndices
tensors are coarse
grained into a new tensor.

g:z«




Recipe of Tensor

}

900000
000000
0000 0 0
000000
0000 0 @
+ 00000

Calculation cost:

Renormalization Group (T

RG)

M. Levin and C. P. Nave, Phys. Rev. Lett. 99, 120601 (2007)
Z.-C. Gu, M. Levin and X.-G. Wen, Phys. Rev. B 78, 205116 (2008)

-

£4 -

SVD= O(D
() (per tensor)

Contraction= O(D?Y)

*By one TRG step, # of tensors is reduced by 1/2.

We can calculate the contraction in polynomial cost!



HOTRG and Anisotropic TRG

Coarse-graining tensors anisotropically:

This approach can be easily generalized to high dimensions.

HOTRG oD ) ATRG O(D*"t)

Z.Y. Xie et al, Phys. Rev. B 86, 045139 (2012) D. Adachi, T. Okubo, and S. Todo, arX1v:1906.02007

4+



Application to a classical partition function

Partition function (Periodic boundary condition)

Repeat TRG step
until only a few
tensors remain.

7 = =

We can easlly calculate physical quantities from Z.

Free energy: F = —kgTInZ

OlnZ

Energy: £ = B (Use difference approximation
or auto differentiation)

2
1 0°InZ H-J Liao et al, Phys. Rev. X 9, 031041(2019)

kgT? 0p?

Specific heat: € =



—xample of calculation

Error of free energy for 2D Ising model

[E—Y
O

[E—

-
L
[w]

—_—
—

[E—
OI

p—
[\
T T7T

Relative error of free energy
S

[
<>

2.1 2.2 2.3 24 2.5
Temperature

2
T./J = ~ 2.269

In (1 ++/2)

Ising model in infinite size

H=—J) 55,
(i.4)

Z.Y. Xie et al, Phys. Rev. B 86, 045139 (2012)

Energy and specific heat of 3D Ising model

Internal Energy U

-0.5

-1.0

-1.5

Temperature

Specific Heat



Interesting topics In tensor network renormalization

Try to find efficient algorithm to remove "short range” entanglement

TNR, Loop-TNR, GILT, Gauge fixing

TNR: G. Evenbly and G. Vidal, Phys. Rev. Lett. 115, 180405 (2015)
Loop-TNR: S. Yang, Z.-C. Gu and , X.-G. Wen, Phys. Rev. Lett. 118, 110504 (2017)

GILT: M. Hauru, C. Delcamp. S. Mizera Phys. Rev. B 97, 045111 (2018)
Gauge fixing: G. Evenbly, Phys. Rev. B 98, 085155 (2018)

Application to lattice QCD

Z.-C. Gu, F. Verstraete, and X.-G. Wen, arXiv:1004.2563

TRG with Grassmann algebra |
S. Takeda, and Y. Yoshimura PTEP 2015, 043B1 (2015).

Property at the criticality

Relation to Conformal invariance

G. Evenbly and G. Vidal,Phys. Rev. Lett. 115, 200401 (2015)
G. Evenbly, Phys. Rev. B 95, 045117 (2017)
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Information compression by tensor networks

We can not treat entire data in the present computers.

» Try to reduce the "effective” dimension of
(Hilbert) space

By considering proper subspace of the Hilbert space,
we can represent a quantum state efficiently.

v

Tensor network guantum states!

Hilbert space

Subspace



Tensor network state

[ "
G.S. wave function: |¥) = Z Wiioinli1%2 .. IN)

Vector (or N-rank tensor): \Ij’il’ig...’iN = m | # of Elements=aN

Tensor network” i1 Q2 I3 i s
decomposition *
* Matrix Product State . .
(MPS) Al[h]z‘b[’@] AN ZN = ? ? ? ? ?

A[m] : Matrix for state m

* General network . . . . .
TI’Xl [Zl]XQ [ZQ]Xg [23]X4 [Z4]X5 [Z5]Y

XY : Tensors

Tr : Tensor network contraction

By choosing a "'good” network, we can express G.S. wave function efficiently.

eX. |MPS: # of elements =2ND2 | D: dimension of the matrix A

L Exponential— Linear  *If D does not depend on N... )




Area law of the entanglement entropy

Entanglement entropy:
Reduced density matrix of a sub system (sub space):

pa = Trpg|0) (0| 00000 O0CO0
Entanglement entropy = von Neumann entropy of p4

S = —Tr(palogpa)

A B

General wave functions:

EE is proportional to its volume (# of spins).

S = —Tr(palogpa) o< L*

(c.f. random vector)

Ground state wave functions:

For a lot of ground states, EE is proportional to its area.
J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys, 277, 82 (2010)

S =—Tr(palogpa) oc L4
Ground state are in a small part of the huge Hilbert space!




Good reviews:

D) (U. Schollwock, Annals. of Physics 326, 96 (2011))
S) (R. Orus, Annals. of Physics 349, 117 (2014))

Matrix product state (M

)= ) Wipaylitie. .. in) MPS

{i1,i2,...iN}

Ui in = A1li1|Aslio] -+ AN[iN]

A[Z] . Matrix for state i

Note:

MPS is called as "tensor train decomposition” in applied mathematics
(I. V. Oseledets, SIAM J. Sci. Comput. 33, 2295 (2011))

A product state is represented by MPS with 1x1 "Matrix" (scalar)

V) = |¢1) @ [p2) ® - -
Wirig.in = Q1]11]P2]i2] - - ON[iN]
Dnlt] = (t]04)




Matrix product state without approximation

General wave function (or vector) can be represented by MPS exactly
through successive Schmidt decompositions

SVD of A1 By

(row) I (column) (row) , (column)

In this construction, the sizes of matrices

» ?_ﬁ_?_? depend on the position.

Maximum bond dimension = a2

At this stage, no data compression.



Matrix product state: Low rank approximation

R A 4 A ¢

Maximum bond dimension = a2

aN

Constant bond dimension = y

x Nay?

If the entanglement entropy of the system is O(1) (independent of N),

matrix size "y

can be small for accurate approximation.

» MPS is good for gapped 1d systems.

On the other hand, if the EE increases as increase /V,

¥ must be increased to keep the same accuracy.




W)= > Toyomar my|ma, ma, -+ ,my)

{m;=1l}
D) —
TeﬂSOr rOdUCt State N-rank tensor: Tmlym%_” mN m
M1 M2 M3 M4 Mg
. . . . \
TPS (Tensor Product State) (AKLT, T. Nishino, K. Okunishi, ...)
PEPS (Projected Entangled-Pair State)
(F. Verstraete and J. Cirac, arXiv:cond-mat/0407066) - N

d-dimensional tensor network representation
for the wave function of a d-dimensional quantum system

Y Tr Ailmi]Asmy] - An[mn]lmima - my)

{mi=172,"'7m} ‘
>

Az ,alyiy [Mi] @ Rank 4+1 tensor

¥)

Tr:tensor network “contraction”

TPS on square lattice

R R

NN

o & &K

e
'Y
RRK&&
&

NN

AAAPPPD

J

oY . xyxy =12 ..D D = “bond dimension”
x
g N = L2 ...m m = dimension of the local Hilbert space ?\ ’\ ?\ ?\ *
\_ *D can be larger than m. “Virtual state “ y
4 D

It satisfies the area low! »

Enough large, but finite, D, a lot of
G.S. can be represented by TPS

*k Finite D even for infinite system! )




Variational calculation using TPS

(Typical) Optimization: Imaginary time evolution
li TV gy = d stat
Jim (e77) " |¢) = ground state
Approximatin Cost information| Accuracy
Simple update O(D5) local bad
Full update O(D19) global better

We repeat updates about 103~ 105 steps

Evaluation: Contraction of the whole network

We use the corner transfer matrix method.
(R. J. Baxter (1968), T. Nishino, ef al (1998), R. Orus et al (2009) ...)

Cost ~ O(D19)

Environment

Only a few calculations =

s

X

8o
-



TeNeS: Tensor Network Solver

We are developing a open source software for massively parallel
tensor network solver for 2D quantum lattice system.
(C++)

-~

— https://githulb.com/issp-center-dev/TeNeS

T N S So far, it is version 0.1,
ENE Update to version 1.0 Is scheduled on March.

English BAE

Top AboutTeNeS Install Documents News Contact

TeNeS

Massively parallel tensor network solver
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Quantum spin system: typical behaviors — +++++

e g e 2
> > > >>
- - B g g S o o
(Quantum) spin system: " I
Spin degree of freedoms defined on < Disorder
a lattice and interact each other (poing +x)
Example: "Transverse field Ising model”
L—1 L
H = — Z Si,zi+1,2 — L Z Si F

> > > >
> > > >

Usually, the ground states have (magnetic) long range orders:
They may appear as a result of spontaneous symmetry breaking.
or
They may be induced by external fields.




Frustration in spin system

Frustration : Competition among several optimization conditions

i Optimization © minimization of the total energy k

H=J)Y S;S, J >0
(7.7} Antiferromagnetic
local energy minimization - anti-parallel spin pair




Frustration in spin system

Frustration : Competition among several optimization conditions

i Optimization : minimization of the total energy h

H=J> S5, J >0
(7.7} Antiferromagnetic
local energy minimization - anti-parallel spin pair
-
Ising spins
4 )
Square
t -~ 1
| N
—e—
\—
All pairs can be anti-parallel
» No frustration
- Y,
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i Optimization : minimization of the total energy h

H=JY S5, J >0
(7.7} Antiferromagnetic
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-
Ising spins
~ ) 4 '
Square Triangle
A 1
| N
—e—
\—
All pairs can be anti-parallel
» No frustration
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Frustration in spin system

Frustration : Competition among several optimization conditions

i Optimization : minimization of the total energy h

H=J> S5, J >0
(7.7} Antiferromagnetic
local energy minimization - anti-parallel spin pair
-
Ising spins
~ ) 4 '
Square Triangle
A 1
| N
S\ 1
l ~ T / :
\—
All pairs can be anti-parallel
» No frustration
- W, .




Frustration in spin system

Frustration : Competition among several optimization conditions

i Optimization © minimization of the total energy k

H=J) S, J >0
(7.7} Antiferromagnetic
local energy minimization - anti-parallel spin pair
-
Ising spins
g Square A g Triangle
t A~
—c—
O 0
.
~ One of three pairs is
All pairs can be anti-parallel necessarily parallel
» No frustration » Frustration!
- W, .




Frustration in spin system

Frustration : Competition among several optimization conditions

i Optimization : minimization of the total energy A

H=1J>» S5, J >0
Ising spins Huge degeneracy in the ground state.
g \ Large tluctuations!

O
e

One of three pairs is
All pairs can be anti-parallel necessarily parallel

» No frustration » Frustration!
_ Yy _ Yy,




Quantum spin liquid

If interactions of the (quantum) spin systems contain frustrations:

» Their ground states might not have any long range order.

Quantum spin liquid

There are a lot of spin liquids based on the mean field theory.

/2 spin liquid
Chiral spin liquid
U(1) spin liquids

. Spin liquid (RVB)
We want to find novel states of the matter (L. Balents, Nature (2010))

Quantum spin liquid
Topological phase
We want to investigate phase transitions between them
(Quantum) critical phenomena
Topological phase transition




Quantum spin liquid

If interactions of the (quantum) spin systems contain frustrations:

» Their ground states might not have any long range order.

A lot of
Tk Interesting things occur
in the Avogadro scale ~ 1023

—) | ' _ An(,\m
We need large scale Calculatlong."ﬂ,4 \

. Spin liquid (RVB)
We want to find novel states of the matter (L. Balents, Nature (2010))

Quantum spin liquid
Topological phase
We want to investigate phase transitions between them
(Quantum) critical phenomena
Topological phase transition




Kagome lattice Heisenberg model

%ff Hamiltonian N { Kagome lattice

szzgi'gj_hzsi,z

\_ (4,) U J
- Ground state at zero field

Classical GS:  All states satisfying “120 degree structure”

» Macroscopic degeneracy

Quantum fluctuation:

Spin liquid?

S=1/2 quantum spin : Z» spin liquid

U(1) spin liquid

Taken from http://koharu2009.blogspot.jp/



Results - Magnetization curve

(R. Okuma, D. Nakamura, T. Okubo, et al, Nat. Commun. 10, 1229 (2019))

Magnetization curve by iTPS
(Several magnetization plateaus are stabilized) 1 | _ '
B |
- Almost converged data up to D=7 D=5 %,.
1/9, 1/3, 5/9 :clear plateaus - 0.8F- Bzg """""";g‘m 7/9
7/9: weak anomaly (}g
J
= o6r A
E 0-4 i ﬁ_'z’ a |
L _ _ ;# O, — — — — — — — — — — — — _ ] 1/3
/,
02r J :
- = :d_;‘” B - ] ] / 9
0 L




Results - Magnetization curve

(R. Okuma, D. Nakamura, T. Okubo, et al, Nat. Commun. 10, 1229 (2019))

Magnetization curve by iTPS
Several magnetization plateaus are stabilized 1 | | |

- Almost converged data up to D=7 Bj:} : %7/“

1/9, 1/3, 5/9 :clear plateaus - 0.8+ Bzg T 7/9
7/9: weak anomaly (g

0.6+ A
E _____________________ T 5 /9
1/3 plateau state is a resonated state. E 04r * 4 - 13

%

/Mr - :fw J— ______________________ ] ]/9




AolrO3

Iridium Oxides

Strong spin-orbit coupling * Effective “spin” moment:  Jeg =

N | —

NaslrOs G.Jackeli, et al., PRL 102, 017205 (2009) r
J. Chaloupka, et al., PRL 105, 027204 (2010)

Ir ions form an honeycomb lattice.

Ir - Ir direct exchange: Heisenlberg interaction

Ir - O - Ir exchange: Anisotropic Kitaev interaction

r - N P,
Depending on the bond direction, only > /
specific spin component interact.
(V) _ v QY
XZ yz

Ground state of the pure Kitaev model: Spin liquid k P,




AolrO3

Iridium Oxides

. . . 1

Strong spin-orbit coupling » Effective “spin” moment:  Jeg = 5
NaslrOs G.Jackeli, et al., PRL 102, 017205 (2009) r D

J. Chaloupka, et al., PRL 105, 027204 (2010) b) 2z

Ir ions form an honeycomb lattice.

Ir - Ir direct exchange: Heisenberg interg

Ir - O - Ir exchange: Anisotropic : ..
s there Kitaev spin liquid

iN the vicinity of NazlrOs?

-
Depending on the bond

specific spin componen

HY) =—-Js78

.

) O
XZ I yz
O O

(J
P,

Ground state of the pure Kitaev model: Spin liquid




ab initio Hamiltonian of NaslrOs

(Y. Yamaji et al. Phys. Rev. Lett. 113, 107201(2014))

-
ab initio Hamiltonian
. e
H= > > SeJrSm
F:X,Y,Z <£,m>EF
J L I K' 1) I} J' I
Jz=|hL J L |, Ix= |1 J" I, | ,Jv=| I K I
L I, K I, I g oI J
Kitaev coupling K and Heisenberg like coupling J
+
Off-diagonal couplings |1 and I2
It also contains J2 and Js interaction term.
Jo 1 only “z-bond” which is perpendicular to NN z-bond.
Jsz : all of the three third neighbors
. J

Due to the trigonal distortion, the ab initio Hamiltonian contains strong
off-diagonal couplings, together with J> and Js interaction



Results: comparison with other methods

T. Okubo et al, PRB 96, 054434 (2017).

Energy (per sites) Order parameter
- T T T T AN Oa4 T T T
1@ ©® :
-6.18} 0.35} 5o O N A
-6.19¢ A 031l AN K Ap Ty
—~ v . Mg : , —
= 62} R _ Lyl T
D) o 0-25
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Results: coms

Stability of the Zigzag(Z) state in the thermodynamic

@ limit is confirmed by iTPS calculation.
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Phase diagram varying the trigonal distortion

T. Okubo et al, PRB 96, 054434 (2017).
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Energies obtained by iTPS and DMRG are consistent
New phases are stabilized compared with the previous ED reports



Lattice expansion

“‘expanded lattice”
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ITPS phase diagram is qualitatively consistent with the ED.

- Around A=0, a Kitaev spin liquid phase is clearly stabilized.




Phase diagram of ED (24-site)
(Y. Yamaji et al, PRL 113, 107201(2014))
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+ ITPS phase diagram is qualitatively consistent with the ED.
- Around A=0, a Kitaev spin liquid phase is clearly stabilized.
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Summary

By using tensor network representation, we can largely compress the information
iInto compact forms.

- A partition function in the statistical physics can be represented by a tensor
network

lts contraction can be done efficiently by tensor network renormalization
technique.

By using MPI parallelization, 4d (3+1 d) calculation becomes realistic.

- We can approximate low energy wave function by using tensor network
states.

Efficiency is guaranteed by the area law of the entanglement entropy
- We can represent infinite systems with finite bond dimensions D.
MPI parallel code TeNeS is available.

For 2d frustrated spin systems, ITPS is one of the most powerful methods.



Outlook

Application to difficult problems
Excitation spectrums

Finite temperature properties
(Lattice QCD)

Nowadays, tensor network representations expand their application to other fields.

Machine learning for classification problem with MPS
E. Miles Stoudenmire and D. J. Schwab, NIPS 2016

Unsupervised Generative Modeling

Born machine instead of Boltzmann machine

S. Cheng et al, Phys. Rev. B 99, 155131 (2019) P(@) = o (=2 M@
Z.-Y. Han et al, Phys. Rev. X 8, 031012 (2018).
Quantum circuit simulation Y %
A. McCaskey et al, PLoS One 13 €0206704 (2018). (MPS) ;i s :
C. Guo et al, Phys. Rev. Lett. 123, 190501 (2019). (TPS) :‘i E_ f%



