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Huge data in physics

Many-body problems in physics
• Celestial movement 
• Gases, Liquids  
• Molecules, Polymers (eg. Proteins), ... 
• Electrons in molecules and solids 
• Elemental particles (Quantum Chromo Dynamics)

In these problems, "systems" contain huge degrees of freedoms:

6N-dimensional phase space for classical mechanics
O(eN)-dimensional Hilbert space for quantum systems



(Classical) statistical mechanics

Canonical ensemble:

Partition function（分配関数） 
＝Normalization factor of the canonical ensemble

Relation to the free energy in thermodynamics

：State (e.g. {S1, S2, ... SL} )

: Probability to appear state Γ

: Inverse temperature

：Hamiltonian (Energy)

If we can calculate Z, we can easily estimate thermodynamic properties.



Expectation value in canonical ensemble

Expectation value of O:

Expectation value of physical quantity 
⟷Macroscopic physical quantities observed in thermodynamics

We can calculate thermodynamic quantities form microscopic model,  
if we can calculate the sum of all states

Real problems： is too huge to calculate exactly

(Even if we use super computer)

MD or MC samplings

<latexit sha1_base64="wPSeXFfxsbQoBSwLoEdTbQxlwN0="></latexit>

Standard procedures:



Quantum systems

Nature: Elementary particles, e.g. electrons, obey quantum mechanics.

 Static problems:

Quantum system: governed by Schrödinger equation 

:Hamiltonian (Energy)
:Wave function (state vector)

Time-independent Schrödinger equation 

Energy
= Eigenvalue problem

Inner product:



Quantum many-body systems

Example of quantum system: Array of quantum bits

2 bits

1 bit

The Hilbert space is spanned  by four basis vectors.

:complex number

The Hamiltonian for 2 bits system can be represented in these bases.

Simple notation:

Matrix element:

<latexit sha1_base64="b0TSKdinjwk9T/dIa6/LeFDtppE="></latexit>

or 

A quantum bit is represented by two basis vectors.



Quantum many-body systems

Example of quantum system: Array of quantum bits

N bits: Dimension of the Hilbert space = 2N

Need to solve eigenvalue problem of huge matrix!

Hamiltonian is 2N  × 2N matrix

In physics,

• Typical system only has "short range" interactions

Hamiltonian matrix becomes sparse.

基底状態
• We often interested in the "ground state" (smallest eigenvalue)

We can concentrate to a special state.



Information compression by tensor network
How can we treat and calculate such eN data in numerics?

One of the methods is an approximate information  
compression by tensor network representations

Calculation of the partition function:
• Tensor network representation of Z 
• Approximated contraction of it  

trough a coarse graining

Eigen value problem:

• Tensor network representation of  
an eigenvector 

• Variational optimization of it 

<latexit sha1_base64="XkC8uXv0uT1Qilx+79HHlBouX2k="></latexit>
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Singular value decomposition (SVD)
Singular value decomposition (SVD):

Unitary Unitary

Diagonal matrix with  
non-negative real elements

Singular values

<latexit sha1_base64="breXh8DXLtNA8Ewjr1L2O8OCXTI=">AAACoHichVHLLgRBFD3aazxnEInEpmNCrKRaJMRqmI0dg0EYmXS3Qpl+pbtmktGZH/ADFlYkFvgDWxs/YOETxJLExsLtnk4Ewa1U1alT99w6lWt4lggkY48tSmtbe0dnqqu7p7evP50ZGNwI3Kpv8qLpWq6/ZegBt4TDi1JIi295Ptdtw+KbRiUf3W/WuB8I11mXdY/v2vqBI/aFqUuiypnhhXIojhpqSThqydbloWGE+UY5k2VTLA71J9ASkEUSK27mFiXswYWJKmxwOJCELegIaOxAA4NH3C5C4nxCIr7naKCbtFXK4pShE1uh9YBOOwnr0DmqGcRqk16xaPqkVDHOHtgVe2H37IY9sfdfa4VxjchLnXajqeVeOX0ysvb2r8qmXeLwU/WnZ4l9zMVeBXn3Yib6hdnU145PX9bmV8fDCXbBnsn/OXtkd/QDp/ZqXhb46tkffgzyEleJELVJ+96Un2BjekojXJjJ5haThqUwijFMUldmkcMSVlCkV0Kc4xo3ypiypCwrhWaq0pJohvAllO0PIiyZfg==</latexit>

Any matrices are uniquely decomposed as

r=rank(A)



Amount of data in SVD representation

,neglect zero  
singular values

If rank(A) is much smaller than M and N, 

we can reduce the data to represent A.
(At this stage, no data loss)



Low rank approximation by SVD

Consider a matrix obtained by neglecting smaller singular values

This approximation is one of the best low rank approximation.

Keep the largest k singular values 
(and corresponding singular vectors).

<latexit sha1_base64="ZDInn7UeZY5fko9ApPg7p1gOAL4="></latexit>



Image compression: grayscale image

Image: 1024 × 768 pixels

768 x1024 matrix A

Perform SVD of A:

Amount of data=786,432

approximation
Amount of data=(768 +1024 + 1)×χ



Image compression

Rank:

Data: 786,432 179,300 179,30
(Original)

Image compression: grayscale image



Scalar, Vector, Matrix, Tensor,...

Scalar: i

Vector: One dimensional array of numbers

Number<latexit sha1_base64="xjTtQZt/S06bAHzsr4SBpd4jRhs="></latexit>

<latexit sha1_base64="wlWQUpOEA9Mmb6ql6UkCS7qzJwA="></latexit>

Matrix:
<latexit sha1_base64="PUy+WJIK1cOmBYjLGbwuDqULCAk=">AAACj3ichVG7SgNBFD2u72cSbQSbYIhYyUSEiIUEbbQQkmiiECXsrqNOsi92JwFd/AErO1ErBQvxD2xt/AELP0EsFWwsvLtZEBX1DjNz5sw9d85wNccQnmTssU1p7+js6u7p7esfGByKxRPDZc9uuDov6bZhuxua6nFDWLwkhTT4huNy1dQMvq7VF4P79SZ3PWFba3Lf4VumumuJHaGrkqjyStUXtcNqPMWmWBjJnyATgRSiyNvxW2xiGzZ0NGCCw4IkbECFR6OCDBgc4rbgE+cSEuE9xyH6SNugLE4ZKrF1WnfpVIlYi85BTS9U6/SKQdMlZRJp9sCu2Qu7Zzfsib3/WssPawRe9mnXWlruVGNHo6tv/6pM2iX2PlV/epbYwWzoVZB3J2SCX+gtffPg5GV1rpj2J9gleyb/F+yR3dEPrOarflXgxfM//GjkJawSIGpT5ntTfoLy9FSGcGEmlVuIGtaDMYxjkrqSRQ5LyKNEr9RwjFOcKQklq8wruVaq0hZpRvAllOUPc6eTSw==</latexit>

Two dimensional array of numbers

Tensor: Higher dimensional array of numbers
i

j

k

Scalar: 0-dim. tensor 
Vector: 1-dim. tensor 
Matrix: 2-dim. tensor



Graphical representations for tensor network

：

：

：

• Vector

• Matrix

• Tensor

* n-rank tensor = n-leg object

When indices are not presented in a graph, it represent a tensor itself.



Graphical representations for tensor network

＝ A BC

AB

C

Contraction of a network

Matrix product

＝ A BC

Generalization to tensors

= Calculation of a lot of multiplications



Low rank approximation: generalization to tensor
Tensor: i

j

k

Naive application of  SVD:

Make a matrix by dividing indices into two parts.

T

i

jk

Then apply SVD (and low rank approximation).

T

i j

kl
T

i j

kl
=

Note: The result depends on the initial mapping to a matrix.

i j

kl
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Tensor network representation of partition function

+1 -1
+1
-1

Partition function:

Classical Ising model on a chain

(転送行列)
Transfer matrix



Tensor network representation in two dimension
Classical Ising model on the square lattice

We can use a tensor instead of the transfer matrix.

Tensor?



Tensor network representation in two dimension

A

A

A

A

A

A

A

A

A

A

Partition function = Tensor network of tensor A

Square lattice Ising model→Square lattice tensor network rotating 45 degrees.
*We can construct a tensor network where tensors are on the nodes of  original lattice.



Outline of tensor network renormalization

Corse graining (Renormalization) 
into √２times longer scale.

Scaler represented 
by L×L tensors

: D×D×D×D

(L×L)/2 tensors

Reduce the number of tensors 
keeping their size constant

Approximation : D×D×D×D



Recipe of Tensor Renormalization Group (TRG)

i

j

k

l

1. Decomposition
Regard a tensor as a matrix

i

j
k

l

i
j

k

l

D-rank approximation  
by SVD

: D×D×D×D : D2×D2

Approximation

M. Levin and C. P. Nave, Phys. Rev. Lett. 99, 120601 (2007)
Z.-C. Gu, M. Levin and X.-G. Wen, Phys. Rev. B 78, 205116 (2008)



2. Coarse graining
Contraction of 
inner indices 

: D×D×D×D

In total, two original 
tensors are coarse 

grained into a new tensor.

Recipe of Tensor Renormalization Group (TRG)
M. Levin and C. P. Nave, Phys. Rev. Lett. 99, 120601 (2007)
Z.-C. Gu, M. Levin and X.-G. Wen, Phys. Rev. B 78, 205116 (2008)



Recipe of Tensor Renormalization Group (TRG)
M. Levin and C. P. Nave, Phys. Rev. Lett. 99, 120601 (2007)
Z.-C. Gu, M. Levin and X.-G. Wen, Phys. Rev. B 78, 205116 (2008)

Calculation cost: SVD= O(D6)
Contraction= O(D6)

(per tensor)

*By one TRG step, # of tensors is reduced by 1/2.

We can calculate the contraction in polynomial cost!



HOTRG and Anisotropic TRG

Coarse-graining tensors anisotropically:

This approach can be easily generalized to high dimensions.

⌘<latexit sha1_base64="6fFfiOA5K65pfNgux7h1VXJdczM="></latexit>

HOTRG

⌘<latexit sha1_base64="6fFfiOA5K65pfNgux7h1VXJdczM="></latexit>

ATRG
Z. Y. Xie et al, Phys. Rev. B 86, 045139 (2012) D. Adachi, T. Okubo, and S. Todo, arXiv:1906.02007

<latexit sha1_base64="Jd45KrQGZigKLvdVxV6pbP7tCsg="></latexit> <latexit sha1_base64="J5GUG7uZLoR7+CVTZKb0Xbm7JpI=">AAACzXichVG7SsRAFD0b3+9VG0GLxUVRBJmIoFiIoIWd7uqq4GNJsrMazCYhmV3UuBY2gj9gYaUgKFb6CzY2lhZ+glgq2Fh4dzbgC3VCMmfO3HNyZq7uWqYvGHuIKBWVVdU1tXX1DY1NzS3R1rYF38l7Bk8ZjuV4S7rmc8u0eUqYwuJLrse1nG7xRX1zsrS/WOCebzr2vNh2+WpOW7fNrGlogqh0tGumb2otWBF8S0izwOOZYjCUGVCLxf50NM4GmRyxn0ANQRzhmHWid1hBBg4M5JEDhw1B2IIGn55lqGBwiVtFQJxHyJT7HEXUkzZPVZwqNGI36btOq+WQtWld8vSl2qC/WPR6pIyhh92zC/bMbtkle2Rvv3oF0qOUZZtmvazlbrrlsGPu9V9VjmaBjQ/Vn5kFshiVWU3K7kqmdAqjrC/sHD3PjSV7gl52yp4o/wl7YDd0ArvwYpwlePL4jzw6ZZEuEv1e9+mWqJnq99b9BAtDgyrhxHB8Yjxsay060Y0+6t0IJjCNWaTIdx/nuMK1MqPklV1lr1yqREJNO74M5eAdkYmk2w==</latexit>



Application to a classical partition function
Partition function (Periodic boundary condition)

Repeat TRG step

until only a few 

tensors remain.

Free energy:

Energy:

Specific heat:

(Use difference approximation 
or auto differentiation)  

We can easily calculate physical quantities from Z.

H.-J. Liao et al, Phys. Rev. X 9, 031041(2019) 



Example of calculation

XIE, CHEN, QIN, ZHU, YANG, AND XIANG PHYSICAL REVIEW B 86, 045139 (2012)

FIG. 4. (Color online) Comparison of the relative errors of free
energy with respect to the exact results for the 2D Ising model
obtained by various methods with D = 24. The critical temperature
Tc = 2/ ln(1 +

√
2).

is already less than 10−7 even at the critical temperature,
much more accurate than the TRG result.7,8 The HOSRG also
performs better than the SRG. But the difference in the results
obtained by these two methods is relatively small around the
critical point. The HOTRG is less accurate than the two SRG
methods, but it is computationally economic. The difference
between TRG/SRG and HOTRG/HOSRG lies mainly in the
basis truncation scheme. The former is based on the SVD,
while the latter is based on the HOSVD. The above comparison
indicates that the HOSVD scheme works better.

III. THREE-DIMENSIONAL SYSTEMS

The above HOTRG and HOSRG methods can be readily
extended to three dimensions. This is an advantage of the
coarse-graining scheme proposed here. On the cubic lattice, a
full cycle of lattice contraction needs to be done in three steps,
along the x axis, y axis, and z axis, respectively. At each step,
two neighboring tensors will be combined to form a single
coarse-grained tensor and the lattice size is reduced by a factor
of 2.

As an example, Fig. 5 shows how the tensors are contracted
along the z axis. The HOSVD of the coarse-grained local
tensor [Fig. 5(b)] can be similarly done as for the 2D case. But
the local tensor now has six bond indices and a HOSVD for a
higher-order tensor should be done. Moreover, the basis spaces
for both the x-axis and y-axis bonds need to be renormalized.
Thus we should determine from the core tensor and the unitary
matrices of M (n) not only the transformation matrix for the
x-direction bonds U (n), but also the transformation matrix
for the y-direction bonds V (n). After that the dimensions for
both x-axis and y-axis bonds are truncated and the local
tensor is updated using U (n) and V (n). The contraction and
renormalization of tensors along the other two directions can
be similarly done. This three-step iteration can then be repeated
until the results are converged.

After the above HOTRG iteration, one can also do a
backward iteration to evaluate the environment tensors and
carry out the HOSRG calculation in three dimensions. A
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FIG. 5. (Color online) (a) A HOTRG coarse-graining step along
the z axis on the cubic lattice. (b) Steps of contraction and
renormalization of two local tensors.

graphical representation for iteratively determining the envi-
ronment tensor in this backward iteration is shown in Fig. 6.
A series of forward-backward iterations is then performed
to take into account the second renormalization effect of the
environment to the coarse-grained tensors. In the subsequent
forward iterations, we evaluate and diagonalize the bond
density matrix (see Fig. 7) and update the coarse-grained
tensors. The environment tensors are evaluated again in the
backward iteration.

In the 3D calculation, the computational time scales with
D11 and the memory scales with D6. This cost in the
computational resource is significantly smaller than in other
3D numerical RG methods.11–17,19 We have studied the 3D
Ising model using the HOTRG for D up to 16.

The temperature dependence of the internal energy U and
the specific heat C for the 3D Ising model obtained by the
HOTRG with D = 14 is shown in Fig. 8 and compared with
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FIG. 6. (Color online) Graphical representation for the deter-
mination of the environment tensor E

(n)
mnjiuk from E

(n+1)
lrf bud in three

dimensions.
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Error of free energy for 2D Ising model
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FIG. 7. (Color online) Graphical representation for the determi-
nation of the bond density matrix ρ(n)

zw,xy from the environment tensor
E

(n+2)
lrf bud in three dimensions.

the Monte Carlo result.27 Our result for the specific heat agrees
with the Monte Carlo one. At the critical temperature, Tc =
4.511544, the internal energy is found to be Uc = −0.995592
for D = 14. This value of Uc, as shown in Table I, also agrees
well with other published data.

From the temperature dependence of the specific heat
around the critical point, one can estimate the critical exponent
of the specific heat with the formula,

C ∼ t−α, (16)

where t = |1 − T/Tc|. However, as the specific heat data are
obtained simply from the numerical derivative of the internal
energy, the accuracy of the specific heat data is much less than
that of the internal energy, especially around the critical point.
This causes a big error in the determination of the exponent α
with the above formula. This problem can be solved by directly
evaluating this exponent from the temperature dependence of
the internal energy. From the temperature integration of the
specific heat, it is simple to show that the internal energy
should exhibit the following critical behavior:

U = Uc + at + bt1−α, (17)

FIG. 8. (Color online) The internal energy and the specific heat
for the 3D Ising model obtained by the HOTRG with D = 14.
The Monte Carlo result (black curve) obtained from an empirical
fit formula given in Ref. 27 is shown for comparison.

TABLE I. Comparison of the internal energy at the critical
temperature Uc for the 3D Ising model obtained by different methods.

Method Uc

HOTRG (D = 16) − 0.990842(3)
Series expansion30 − 0.991(1)
Series expansion31 − 0.9902(1)
Series expansion32 − 0.99218(15)
Monte Carlo27 − 0.990604(4)
Monte Carlo33 − 0.9904(8)
Monte Carlo34 − 0.990(4)

where a and b are unknown parameters which can be
determined by fitting.

Figure 9 shows the fitting curves for the internal energy
around the critical point obtained with Eq. (17). The critical
exponent is found to be α = 0.1023 and 0.1137 for the tem-
perature higher and lower than the critical value, respectively.
These values of the critical exponent are consistent with the
result obtained from the series expansion,28 0.104, and the
Monte Carlo calculation,29 0.111.

Figure 10 shows the temperature dependence of the sponta-
neous magnetization M obtained by the HOTRG with D = 14.
Our data agree well with the Monte Carlo results.35 From the
singular behavior of M , we find that the critical temperature
Tc = 4.511615 for D = 14. Furthermore, by fitting the data of
M in the critical regime with the formula,

M ∼ tγ , (18)

we find that the exponent γ = 0.3295, consistent with the
Monte Carlo29 (0.3262) and series expansion36 (0.3265)
results.

Figure 11 shows the critical temperature Tc determined
from the singular points of the internal energy as well as the
magnetization for D up to 16. The values of Tc obtained from
these two quantities agree with each other. For D = 16, Tc

obtained from the internal energy and the magnetization are
4.511544 and 4.511546, respectively. The relative difference
is less than 10−6. But Tc does not vary monotonically with

FIG. 9. (Color online) The internal energy (D = 14) and its fitting
curves with Eq. (17) around the critical point for the 3D Ising model.
α is the critical exponent for the specific heat.

045139-5

Energy and specific heat of 3D Ising model

Ising model in infinite size



Interesting topics in tensor network renormalization
• Try to find efficient algorithm to remove "short range" entanglement 

• TNR, Loop-TNR, GILT, Gauge fixing 

• Application to lattice QCD 

• TRG with Grassmann algebra 

• Property at the criticality 

• Relation to Conformal invariance 

TNR: G. Evenbly and G. Vidal, Phys. Rev. Lett. 115, 180405 (2015)
Loop-TNR: S. Yang, Z.-C. Gu and , X.-G. Wen, Phys. Rev. Lett. 118, 110504 (2017)

Z.-C. Gu, F. Verstraete, and X.-G. Wen, arXiv:1004.2563
S. Takeda, and Y. Yoshimura PTEP 2015, 043B1 (2015). 

G. Evenbly and G. Vidal,Phys. Rev. Lett. 115, 200401 (2015)

G. Evenbly, Phys. Rev. B 95, 045117 (2017)

GILT:  M. Hauru, C. Delcamp. S. Mizera Phys. Rev. B 97, 045111 (2018)

Gauge fixing: G. Evenbly, Phys. Rev. B 98, 085155 (2018)



Contents

• Huge data in physics 

• Information compression 

• Basics: singular value decomposition  

• Tensor network renormalization 

• Tensor network quantum states 

• Applications 

• Summary and outlook



Information compression by tensor networks

We can not treat entire data in the present computers.

Try to reduce the "effective" dimension of  
(Hilbert) space

By considering proper subspace of the Hilbert space,  
we can represent a quantum state efficiently.

Tensor network quantum states!

Hilbert space

Subspace



Tensor network state

G.S. wave function:

Vector (or N-rank tensor): # of Elements＝aN

i1 i2 i3 i4 i5``Tensor network” 
decomposition

=

General network

i1 i2

i3

i4

i5

X,Y : Tensors
Tr : Tensor network contraction

Matrix Product State 
(MPS)

：Matrix for state m

=
i1 i2 i3 i4 i5

D: dimension of the matrix A

By choosing a ``good” network, we can express G.S. wave function efficiently.

ex. MPS: # of elements ＝2ND2

Exponential→ Linear *If D does not depend on N…



Area law of the entanglement entropy

General wave functions:
A

B

LEE is proportional to its volume (# of spins).

Ground state wave functions:
For a lot of ground states, EE is proportional to its area.

A B

J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys, 277, 82 (2010)

Ground state are in a small part of the huge Hilbert space!

(c.f. random vector)

Entanglement entropy:
Reduced density matrix of a sub system (sub space):

Entanglement entropy = von Neumann entropy of ρA



Matrix product state (MPS)

：Matrix for state i

MPS

Note:

• A product state is represented by MPS with 1×1 "Matrix" (scalar) 

(U. Schollwöck, Annals. of Physics 326, 96 (2011))
(R. Orús, Annals. of Physics 349, 117 (2014))

Good reviews:

• MPS is called as "tensor train decomposition" in applied mathematics
(I. V. Oseledets, SIAM J. Sci. Comput. 33, 2295 (2011))



Matrix product state without approximation

General wave function (or vector) can be represented by MPS exactly  
through successive Schmidt decompositions

SVD of 

…
In this construction, the sizes of matrices  

depend on the position.

At this stage, no data compression.

Maximum bond dimension = aN/2

(row) (column)

<latexit sha1_base64="sUfwMe83hWkdG+Tm2dWYlfxOS9Q="></latexit>
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Matrix product state: Low rank approximation

Maximum bond dimension = aN/2=

Constant bond dimension = χ

If the entanglement entropy of the system is O(1) (independent of N), 
matrix size "χ" can be small for accurate approximation.

MPS is good for gapped 1d systems.

On the other hand, if the EE increases as increase N, 
"χ" must be increased to keep the same accuracy.



Tensor Product State

PEPS (Projected Entangled-Pair State)
(F. Verstraete and J. Cirac, arXiv:cond-mat/0407066)

d-dimensional tensor network representation 

for the wave function of a d-dimensional quantum system

x,y,x’,y’ = 1,2, ... D D = “bond dimension”

mi= 1,2, ... m m = dimension of the local Hilbert space 

*D can be larger than m.  “Virtual state “

: Rank 4+1 tensor

TPS on square lattice

Tr: tensor network “contraction”

(AKLT, T. Nishino, K. Okunishi, …) TPS (Tensor Product State)

Enough large, but finite, D, a lot of 
G.S. can be represented by TPSIt satisfies the area low!

＊Finite D even for infinite system!

T

m1 m2 m3 m4 m5

=N-rank tensor:



Variational calculation using TPS 
(Typical) Optimization: Imaginary time evolution

Approximatin Cost information Accuracy

Simple update O(D5) local bad

Full update O(D10) global better

Evaluation: Contraction of the whole network
We use the corner transfer matrix method. 

(R. J. Baxter (1968), T. Nishino, et al (1998), R. Orus et al (2009) ...)

Cost ~ O(D10)

We repeat updates about 103~ 105 steps

Only a few calculations

Environment C C

CC

e

e

e

e



TeNeS: Tensor Network Solver 

We are developing a open source software for massively parallel 
tensor network solver for 2D quantum lattice system. 

https://github.com/issp-center-dev/TeNeS

So far, it is version 0.1. 
Update to version 1.0 is scheduled on March.

(c++) 
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Quantum spin system: typical behaviors

Example: "Transverse field Ising model"

Disorder 
(poing +x)

Ferro  
(pointing ±z)
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Usually, the ground states have (magnetic) long range orders: 
They may appear as a result of spontaneous symmetry breaking. 

or 
They may be induced by external fields.

（Quantum) spin system:
Spin degree of freedoms defined on  

a lattice and interact each other



Frustration in spin system

Optimization：minimization of  the total energy

local energy minimization ： anti-parallel spin pair
Antiferromagnetic

Frustration：Competition among several optimization conditions
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Frustration in spin system
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Optimization：minimization of  the total energy

local energy minimization ： anti-parallel spin pair
Antiferromagnetic

One of three pairs is 
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Frustration in spin system

Triangle

Optimization：minimization of  the total energy

local energy minimization ： anti-parallel spin pair
Antiferromagnetic

One of three pairs is 
necessarily parallel

Frustration!

?

Frustration：Competition among several optimization conditions

Ising spins
Square

All pairs can be anti-parallel
No frustration

Huge degeneracy in the ground state. 
Large fluctuations!



Quantum spin liquid
If interactions of the (quantum) spin systems contain frustrations:

Their ground states might not have any long range order.

a

b
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order and/or freezing is observed, by using NMR spectroscopy, at T < 1 K 
(ref. 56). More over, recent experiments show that this compound has a 
complex series of low-temperature phases in an applied magnetic field56. 
Given the exceptionally high purity of Cu3V2O7(OH)2•2H2O, an expla-
nation of its phase diagram should be a clear theoretical goal. 

Theoretical interpretations
I now turn to the theoretical evidence for QSLs in these systems and 
how the experiments can be reconciled with theory. Theorists have 
attempted to construct microscopic models for these materials (Box 2) 
and to determine whether they support QSL ground states. In the case 
of the organic compounds, these are Hubbard models, which account 
for significant charge fluctuations. For the kagomé materials, a Heisen-
berg model description is probably ap propriate. There is general theo-
retical agreement that the Hubbard model for a triangular lattice has 
a QSL ground state for intermediate-strength Hubbard repulsion near 
the Mott transition57–59. On the kagomé lattice, the Heisenberg model 
is expected to have a non-magnetic ground state as a result of frus-
tration60. Recently, there has been growing theoretical support for the 
conjecture that the ground state is, however, not a QSL but a VBS with 
a large, 36-site, unit cell61,62. However, all approaches indicate that many 
competing states exist, and these states have extremely small energy dif-
ferences from this VBS state. Thus, the ‘real’ ground state in the kagomé 
materials is proba bly strongly perturbed by spin–orbit coupling, dis-
order, further-neighbour interactions and so on63. A similar situation 
applies to the hyperkagomé lattice of Na4Ir3O8 (ref. 64).

These models are difficult to connect directly, and in detail, to 
experi ments, which mainly measure low-energy properties at low tem-
peratures. Instead, attempts to reconcile theory and experiment in detail 
have re lied on more phenomenological low-energy effective theories 
of QSLs. Such effective theories are similar in spirit to the Fermi liquid 
theory of interacting metals: they propose that the ground state has a 
certain structure and a set of elementary excitations that are consistent 
with this structure. In contrast to the Fermi liquid case, however, the 
elementary excitations consist of spinons and other exotic par ticles, 
which are coupled by gauge fields. A theory of this type — that is, pro-
posing a ‘spinon Fermi surface’ coupled to a U(1) gauge field — has 
had some success in explaining data from experiments on κ-(BEDT-
TTF)2Cu2(CN)3 (refs 65, 66). Related theories have been proposed for 
ZnCu3(OH)6Cl2 (ref. 67) and Na4Ir3O8 (ref. 68). However, comparisons 

for these materials are much more limited. In all cases, the comparison 
of theory with experiment has, so far, been indirect. I return to this 
problem in the subsection ‘The smoking gun for QSLs’.

Unexpected findings
In the course of a search as difficult as the one for QSLs, it is natural for 
there to be false starts. In several cases, researchers uncovered other 
interesting physical phenomena in quantum magnetism.

Dimensional reduction in Cs2CuCl4
Cs2CuCl4 is a spin-½ antiferromagnet on a moderately anisotropic 
trian gular lattice69,70. It shows only intermediate frustration, with f ≈ 8, 
ordering into a spiral Néel state at TN = 0.6 K. However, neutron-scat-
tering results for this compound reported by Coldea and colleagues 
suggested that exotic physical phenomena were occurring69,70. These 
experiments measure the type of excitation that is created when a neu-
tron interacts with a solid and flips an electron spin. In normal mag-
nets, this creates a magnon and, correspondingly, a sharp resonance is 
observed when the energy and momentum transfer of the neutron equal 
that of the magnon. In Cs2CuCl4, this resonance is extremely small. 
Instead, a broad scattering feature is mostly observed. The interpreta-
tion of this result is that the neutron’s spin flip creates a pair of spinons, 
which divide the neutron’s en ergy and momentum between them. The 
spinons were suggested to arise from an underlying 2D QSL state.

A nagging doubt with respect to this picture was the striking similar-
ity between some of the spectra in the experiment and those of a 1D 
spin chain, in which 1D spinons indeed exist71. In fact, in Cs2CuCl4 the 
exchange energy along one ‘chain’ direction is three times greater than 
along the diagonal bonds between chains (that is, Jʹ ≈ J/3 in Fig. 1a). 
Experimentally, however, the presence of substantial transverse disper-
sion (that is, dependence of the neutron peak on momentum perpendic-
ular to the chain axis in Cs2CuCl4), and the strong influence of interchain 
coupling on the magnetization curve, M(H), seemed to rule out a 1D 
origin, despite an early theoretical suggestion72.

In the past few years, it has become clear that discarding the idea of 
1D physics was premature73,74. It turns out that although the interchain 
coupling is substantial, and thus affects the M(H) curve significantly, 
the frustration markedly reduces interchain correlations in the ground 
state. As a result, the elementary excitations of the system are simi-
lar to those of 1D chains, with one important exception. Because the 

Figure 3 | Valence-bond states of frustrated antiferromagnets. In a VBS 
state (a), a specific pattern of entangled pairs of spins — the valence bonds 
— is formed. Entangled pairs are indicated by ovals that cover two points 
on the triangular lattice. By contrast, in a RVB state, the wavefunction is a 

superposition of many different pairings of spins. The valence bonds may 
be short range (b) or long range (c). Spins in longer-range valence bonds 
(the longer, the lighter the colour) are less tightly bound and are therefore 
more easily excited into a state with non-zero spin. 
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Spin liquid (RVB)
(L. Balents, Nature (2010))

Quantum spin liquid

• Z2 spin liquid 
• Chiral spin liquid 
• U(1) spin liquids 
• ...

There are a lot of spin liquids based on the mean field theory.

• We want to find novel states of the matter 
• Quantum spin liquid 
• Topological phase 

• We want to investigate phase transitions between them 
• (Quantum) critical phenomena 
• Topological phase transition
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complex series of low-temperature phases in an applied magnetic field56. 
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and to determine whether they support QSL ground states. In the case 
of the organic compounds, these are Hubbard models, which account 
for significant charge fluctuations. For the kagomé materials, a Heisen-
berg model description is probably ap propriate. There is general theo-
retical agreement that the Hubbard model for a triangular lattice has 
a QSL ground state for intermediate-strength Hubbard repulsion near 
the Mott transition57–59. On the kagomé lattice, the Heisenberg model 
is expected to have a non-magnetic ground state as a result of frus-
tration60. Recently, there has been growing theoretical support for the 
conjecture that the ground state is, however, not a QSL but a VBS with 
a large, 36-site, unit cell61,62. However, all approaches indicate that many 
competing states exist, and these states have extremely small energy dif-
ferences from this VBS state. Thus, the ‘real’ ground state in the kagomé 
materials is proba bly strongly perturbed by spin–orbit coupling, dis-
order, further-neighbour interactions and so on63. A similar situation 
applies to the hyperkagomé lattice of Na4Ir3O8 (ref. 64).

These models are difficult to connect directly, and in detail, to 
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In the course of a search as difficult as the one for QSLs, it is natural for 
there to be false starts. In several cases, researchers uncovered other 
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trian gular lattice69,70. It shows only intermediate frustration, with f ≈ 8, 
ordering into a spiral Néel state at TN = 0.6 K. However, neutron-scat-
tering results for this compound reported by Coldea and colleagues 
suggested that exotic physical phenomena were occurring69,70. These 
experiments measure the type of excitation that is created when a neu-
tron interacts with a solid and flips an electron spin. In normal mag-
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observed when the energy and momentum transfer of the neutron equal 
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Instead, a broad scattering feature is mostly observed. The interpreta-
tion of this result is that the neutron’s spin flip creates a pair of spinons, 
which divide the neutron’s en ergy and momentum between them. The 
spinons were suggested to arise from an underlying 2D QSL state.

A nagging doubt with respect to this picture was the striking similar-
ity between some of the spectra in the experiment and those of a 1D 
spin chain, in which 1D spinons indeed exist71. In fact, in Cs2CuCl4 the 
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sion (that is, dependence of the neutron peak on momentum perpendic-
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coupling on the magnetization curve, M(H), seemed to rule out a 1D 
origin, despite an early theoretical suggestion72.

In the past few years, it has become clear that discarding the idea of 
1D physics was premature73,74. It turns out that although the interchain 
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Spin liquid (RVB)
(L. Balents, Nature (2010))

Quantum spin liquid

• Z2 spin liquid 
• Chiral spin liquid 
• U(1) spin liquids 
• ...

There are a lot of spin liquids based on the mean field theory.

• We want to find novel states of the matter 
• Quantum spin liquid 
• Topological phase 

• We want to investigate phase transitions between them 
• (Quantum) critical phenomena 
• Topological phase transition

A lot of 
interesting things occur  

in the Avogadro scale ~ 1023 
　　→We need large scale calculations!



Kagome lattice Heisenberg model

Macroscopic degeneracy

Spin liquid?

All states satisfying “120 degree structure”

• Ground state at zero field
Classical GS:

S=1/2 quantum spin：

Hamiltonian

Quantum fluctuation:

• Z2 spin liquid

• U(1) spin liquid 

• …

Taken from http://koharu2009.blogspot.jp/

Kagome

Kagome lattice



Results：Magnetization curve

Several magnetization plateaus are stabilized

・Almost converged data up to D=7

1/9, 1/3, 5/9 :clear plateaus

7/9: weak anomaly
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1/3 plateau state is a resonated state.



A2IrO3

Strong spin-orbit coupling Effective ``spin” moment: 

Iridium Oxides

for the symmetry of the intersite interactions. Namely, the
very form of the exchange Hamiltonian depends on bond
geometry through a density profile of Kramers states, as we
demonstrate below.

Exchange couplings of neighboring Kramers states.—
We consider the limit of the strong spin-orbit coupling, i.e.,
when ! is larger than exchange interaction between the
isospins. The exchange Hamiltonians for isospins are then
obtained by projecting the corresponding superexchange
spin-orbital models onto the isospin states Eq. (1). First, we
present the results for the case of cubic symmetry (! ¼ 0,
sin"¼ 1=

ffiffiffi
3

p
), and discuss later the effects of a tetragonal

distortion. We consider two common cases of TM-O-TM
bond geometries: (A) a 180"-bond formed by corner-
shared octahedra as in Fig. 2(a), and (B) a 90"-bond
formed by edge-shared ones, Fig. 2(b).

(A) A 180" bond: For this geometry, the nearest-
neighbor t2ghopping matrix is diagonal in the orbital space
and, on a given bond, only two orbitals are active, e.g., jxyi
and jxzi orbitals along a bond in x-direction [Fig. 2(a)].
The spin-orbital exchange Hamiltonian for such a system
has already been reported: see Eq. (3.11) in Ref. [12]. After
projecting it onto the ground state doublet, we find an
exchange Hamiltonian for isospins in a form of

Heisenberg plus a pseudodipolar interaction,

H ij ¼ J1 ~Si # ~Sj þ J2ð ~Si # ~rijÞð~rij # ~SjÞ; (2)

where ~Si is theS¼ 1=2 operator for isospins (referred to as
simply spins from now on), ~rij is the unit vector along the
ij bond, and J1ð2Þ ¼ 4

9#1ð2Þ. Hereafter, we use the energy
scale 4t2=U where t is a dd-transfer integral through an
intermediate oxygen, and U stands for the Coulomb re-
pulsion on the same orbitals. The parameters #1ð2Þ control-
ling isotropic (anisotropic) couplings are given by
#1 ¼ ð3r1 þ r2 þ 2r3Þ=6 and #2 ¼ ðr1 ' r2Þ=4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio $ ¼ JH=U of
Hund’s coupling and U [24]. At small $, one has #1 ’ 1
and #2 ’ $=2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolarlike anisotropy term.
While the overall form of Eq. (2) could be anticipated
from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO coupling,
the magnetic degrees are governed by a nearly Heisenberg
model just like in the case of small !, and, surprisingly
enough, its anisotropy is entirely due to the Hund’s cou-
pling. This is opposite to a conventional situation: typi-
cally, the anisotropy corrections are obtained in powers of
! while the Hund’s coupling is not essential.
(B) A 90" bond: There are again only two orbitals active

on a given bond, e.g., jxzi and jyzi orbitals along a bond in
the xy-plane. However, the hopping matrix has now only
nondiagonal elements, and there are two possible paths for
a charge transfer [via upper or lower oxygen, see Fig. 2(b)].
This peculiarity of a 90" bond leads to an exchange
Hamiltonian drastically different from that of a 180" ge-
ometry. Two transfer amplitudes via upper and lower oxy-
gen interfere in a destructive manner and the isotropic part
of the Hamiltonian exactly vanishes. The finite, anisotropic
interaction appears, however, due to the JH-multiplet struc-
ture of the excited levels. Most importantly, the very form
of the exchange interaction depends on the spatial orienta-
tion of a given bond. We label a bond ij laying in the %&
plane perpendicular to the 'ð¼ x; y; zÞ axis by a (')-bond.
With this in mind, the Hamiltonian can be written as

H ð'Þ
ij ¼ ' JS'i S

'
j ; (3)

with J ¼ 4
3#2. Remarkably, this Hamiltonian is precisely a

quantum analog of the so-called compass model. The latter,
introduced originally for the orbital degrees of freedom in
Jahn-Teller systems [5], has been the subject of numerous
studies as a prototype model with protected ground state
degeneracy of topological origin (see, e.g., Ref. [25]).
However, to our knowledge, no magnetic realization of
the compass model has been proposed so far.
Implementing the Kitaev model in Mott insulators.—The

Kitaev model is equivalent to a quantum compass model on
a honeycomb lattice [26]. It shows a number of fascinating
properties such as anyonic excitations with exotic frac-

isospin up spin up, lz=0 spin down, lz=1

+=

FIG. 1 (color online). Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition of a
spin up hole density in jxyi-orbital, lz ¼ 0 (middle), and spin
down one in ðjyzi þ ijxziÞ state, lz ¼ 1 (right).
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p zxz xz

180 o
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p z
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FIG. 2 (color online). Two possible geometries of a TM-O-TM
bond with corresponding orbitals active along these bonds. The
large (small) dots stand for the transition metal (oxygen) ions.
(a) A 180"-bond formed by corner-shared octahedra, and (b) a
90"-bond formed by edge-shared octahedra.
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tional statistics, topological degeneracy, and, in particular,
it is relevant for quantum computation [18]. This generated
an enormous interest in a possible realization of this model
in real systems, with current proposals based on optical
lattices [27]. Here, we outline how to ‘‘engineer’’ the
Kitaev model in Mott insulators.

Shown in Fig. 3(a) is a triangular unit formed by 90!

bonds together with ‘‘compass’’ interactions that follow
from Eq. (3). Such a structure is common for a number of
oxides, e.g., layered compounds ABO2 (where A and B are
alkali and TM ions, respectively). The triangular lattice of
magnetic ions in an ABO2 structure can be depleted down
to a honeycomb lattice (by periodic replacements of TM
ions with nonmagnetic ones). One then obtains an A2BO3

compound, which has a hexagonal unit shown in Fig. 3(b).
There are three nonequivalent bonds, each being perpen-
dicular to one of the cubic axes x, y, z. Then, according to
Eq. (3), the spin coupling, e.g., on a (x)-bond, is of Sxi S

x
j

type, precisely as in the Kitaev model. The honeycomb
lattice provides a particularly striking example of new
physics introduced by strong SO coupling: the
Heisenberg model is converted into the Kitaev model
with a spin-liquid ground state.

The compound Li2RuO3 [28] represents a physical ex-
ample of the A2BO3 structure. By replacement of spin-one
Ru4þ with spin-one-half Ir4þ ions, one may realize a
strongly spin-orbit-coupledMott insulator with low-energy
physics described by the Kitaev model.

‘‘Weak’’ ferromagnetism of Sr2IrO4.—As an example of
a spin-orbit-coupled Mott insulator, we discuss the layered
compound Sr2IrO4, a t2g analog of the undoped high-Tc

cuprate La2CuO4. In Sr2IrO4, a square lattice of Ir
4þ ions is

formed by corner-shared IrO6 octahedra, elongated along
the c-axis and rotated about it by ! ’ 11! [19] (see Fig. 4).
Sr2IrO4 undergoes a magnetic transition at # 240 K dis-

playing a weak FM, which can be ascribed to a
Dzyaloshinsky-Moriya (DM) interaction. The puzzling
fact is that ‘‘weak’’ FM moment is unusually large,
’ 0:14"B [20] which is 2 orders of magnitude larger
than that in La2CuO4 [29]. A corresponding spin canting
angle # ’ 8! is close to !, i.e., the ordered spins seem to
rigidly follow the staggered rotations of octahedra. Here,
we show that the strong SO coupling scenario gives a
natural explanation of this observation.
We first show the dominant part of the Hamiltonian for

Sr2IrO4 neglecting the Hund’s coupling for a moment.
Accounting for the rotations of IrO6 octahedra, we find

H ¼ J ~Si % ~Sj þ JzS
z
i S

z
j þ ~D % ½ ~Si ' ~Sj(: (4)

Here, the isotropic coupling J ¼ $1ðt2s * t2aÞ, where ts ¼
sin2% þ 1

2 cos
2% cos2!, and ta ¼ 1

2 cos
2% sin2!. The second

and third terms describe the symmetric and DM anisotro-
pies, with Jz ¼ 2$1t

2
a, ~D ¼ ð0; 0; * DÞ, and D ¼ 2$1tsta.

[For ! ¼ 0, these terms vanish and we recover J1-term of
the 180! result (2).] As it follows from Eq. (4), the spin
canting angle is given by a ratio D=J ’ 2ta=ts # 2!which
is independent of &, and is solely determined by lattice
distortions. This explains the large spin canting angle # #
! in Sr2IrO4.
As in the case of weak SO coupling [30], the

Hamiltonian (4) can in fact be mapped to the Heisenberg

model ~~Si % ~~Sj where operators ~~S are obtained by a stag-

gered rotation of ~S around the z-axis by an angle , #, with
tanð2#Þ ¼ D=J. Thus, at JH ¼ 0, there is no true magnetic
anisotropy. Once JH-corrections are included, the
Hamiltonian receives also the anisotropic terms,
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FIG. 3 (color online). Examples of the structural units formed
by 90! TM-O-TM bonds and corresponding spin-coupling pat-
terns. Gray circles stand for magnetic ions, and small open
circles denote oxygen sites. (a) Triangular unit cell of
ABO2-type layered compounds, periodic sequence of this unit
forms a triangular lattice of magnetic ions. The model (3) on this
structure is a realization of a quantum compass model on a
triangular lattice: e.g., on a bond 1-2, laying perpendicular to
x-axis, the interaction is Sx1S

x
2. (b) Hexagonal unit cell of

A2BO3-type layered compound, in which magnetic ions
(B-sites) form a honeycomb lattice. (Black dot: nonmagnetic
A-site). On an xx-bond, the interaction is Sxi S

x
j , etc. For this

structure, the model (3) is identical to the Kitaev model.
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for the symmetry of the intersite interactions. Namely, the
very form of the exchange Hamiltonian depends on bond
geometry through a density profile of Kramers states, as we
demonstrate below.

Exchange couplings of neighboring Kramers states.—
We consider the limit of the strong spin-orbit coupling, i.e.,
when ! is larger than exchange interaction between the
isospins. The exchange Hamiltonians for isospins are then
obtained by projecting the corresponding superexchange
spin-orbital models onto the isospin states Eq. (1). First, we
present the results for the case of cubic symmetry (! ¼ 0,
sin"¼ 1=

ffiffiffi
3

p
), and discuss later the effects of a tetragonal

distortion. We consider two common cases of TM-O-TM
bond geometries: (A) a 180"-bond formed by corner-
shared octahedra as in Fig. 2(a), and (B) a 90"-bond
formed by edge-shared ones, Fig. 2(b).

(A) A 180" bond: For this geometry, the nearest-
neighbor t2ghopping matrix is diagonal in the orbital space
and, on a given bond, only two orbitals are active, e.g., jxyi
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The spin-orbital exchange Hamiltonian for such a system
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9#1ð2Þ. Hereafter, we use the energy
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pling. This is opposite to a conventional situation: typi-
cally, the anisotropy corrections are obtained in powers of
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on a given bond, e.g., jxzi and jyzi orbitals along a bond in
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tion of a given bond. We label a bond ij laying in the %&
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With this in mind, the Hamiltonian can be written as

H ð'Þ
ij ¼ ' JS'i S

'
j ; (3)

with J ¼ 4
3#2. Remarkably, this Hamiltonian is precisely a

quantum analog of the so-called compass model. The latter,
introduced originally for the orbital degrees of freedom in
Jahn-Teller systems [5], has been the subject of numerous
studies as a prototype model with protected ground state
degeneracy of topological origin (see, e.g., Ref. [25]).
However, to our knowledge, no magnetic realization of
the compass model has been proposed so far.
Implementing the Kitaev model in Mott insulators.—The

Kitaev model is equivalent to a quantum compass model on
a honeycomb lattice [26]. It shows a number of fascinating
properties such as anyonic excitations with exotic frac-

isospin up spin up, lz=0 spin down, lz=1

+=

FIG. 1 (color online). Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition of a
spin up hole density in jxyi-orbital, lz ¼ 0 (middle), and spin
down one in ðjyzi þ ijxziÞ state, lz ¼ 1 (right).
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FIG. 2 (color online). Two possible geometries of a TM-O-TM
bond with corresponding orbitals active along these bonds. The
large (small) dots stand for the transition metal (oxygen) ions.
(a) A 180"-bond formed by corner-shared octahedra, and (b) a
90"-bond formed by edge-shared octahedra.
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tional statistics, topological degeneracy, and, in particular,
it is relevant for quantum computation [18]. This generated
an enormous interest in a possible realization of this model
in real systems, with current proposals based on optical
lattices [27]. Here, we outline how to ‘‘engineer’’ the
Kitaev model in Mott insulators.

Shown in Fig. 3(a) is a triangular unit formed by 90!

bonds together with ‘‘compass’’ interactions that follow
from Eq. (3). Such a structure is common for a number of
oxides, e.g., layered compounds ABO2 (where A and B are
alkali and TM ions, respectively). The triangular lattice of
magnetic ions in an ABO2 structure can be depleted down
to a honeycomb lattice (by periodic replacements of TM
ions with nonmagnetic ones). One then obtains an A2BO3

compound, which has a hexagonal unit shown in Fig. 3(b).
There are three nonequivalent bonds, each being perpen-
dicular to one of the cubic axes x, y, z. Then, according to
Eq. (3), the spin coupling, e.g., on a (x)-bond, is of Sxi S

x
j

type, precisely as in the Kitaev model. The honeycomb
lattice provides a particularly striking example of new
physics introduced by strong SO coupling: the
Heisenberg model is converted into the Kitaev model
with a spin-liquid ground state.

The compound Li2RuO3 [28] represents a physical ex-
ample of the A2BO3 structure. By replacement of spin-one
Ru4þ with spin-one-half Ir4þ ions, one may realize a
strongly spin-orbit-coupledMott insulator with low-energy
physics described by the Kitaev model.

‘‘Weak’’ ferromagnetism of Sr2IrO4.—As an example of
a spin-orbit-coupled Mott insulator, we discuss the layered
compound Sr2IrO4, a t2g analog of the undoped high-Tc

cuprate La2CuO4. In Sr2IrO4, a square lattice of Ir
4þ ions is

formed by corner-shared IrO6 octahedra, elongated along
the c-axis and rotated about it by ! ’ 11! [19] (see Fig. 4).
Sr2IrO4 undergoes a magnetic transition at # 240 K dis-

playing a weak FM, which can be ascribed to a
Dzyaloshinsky-Moriya (DM) interaction. The puzzling
fact is that ‘‘weak’’ FM moment is unusually large,
’ 0:14"B [20] which is 2 orders of magnitude larger
than that in La2CuO4 [29]. A corresponding spin canting
angle # ’ 8! is close to !, i.e., the ordered spins seem to
rigidly follow the staggered rotations of octahedra. Here,
we show that the strong SO coupling scenario gives a
natural explanation of this observation.
We first show the dominant part of the Hamiltonian for

Sr2IrO4 neglecting the Hund’s coupling for a moment.
Accounting for the rotations of IrO6 octahedra, we find

H ¼ J ~Si % ~Sj þ JzS
z
i S

z
j þ ~D % ½ ~Si ' ~Sj(: (4)

Here, the isotropic coupling J ¼ $1ðt2s * t2aÞ, where ts ¼
sin2% þ 1

2 cos
2% cos2!, and ta ¼ 1

2 cos
2% sin2!. The second

and third terms describe the symmetric and DM anisotro-
pies, with Jz ¼ 2$1t

2
a, ~D ¼ ð0; 0; * DÞ, and D ¼ 2$1tsta.

[For ! ¼ 0, these terms vanish and we recover J1-term of
the 180! result (2).] As it follows from Eq. (4), the spin
canting angle is given by a ratio D=J ’ 2ta=ts # 2!which
is independent of &, and is solely determined by lattice
distortions. This explains the large spin canting angle # #
! in Sr2IrO4.
As in the case of weak SO coupling [30], the

Hamiltonian (4) can in fact be mapped to the Heisenberg

model ~~Si % ~~Sj where operators ~~S are obtained by a stag-

gered rotation of ~S around the z-axis by an angle , #, with
tanð2#Þ ¼ D=J. Thus, at JH ¼ 0, there is no true magnetic
anisotropy. Once JH-corrections are included, the
Hamiltonian receives also the anisotropic terms,
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FIG. 3 (color online). Examples of the structural units formed
by 90! TM-O-TM bonds and corresponding spin-coupling pat-
terns. Gray circles stand for magnetic ions, and small open
circles denote oxygen sites. (a) Triangular unit cell of
ABO2-type layered compounds, periodic sequence of this unit
forms a triangular lattice of magnetic ions. The model (3) on this
structure is a realization of a quantum compass model on a
triangular lattice: e.g., on a bond 1-2, laying perpendicular to
x-axis, the interaction is Sx1S

x
2. (b) Hexagonal unit cell of

A2BO3-type layered compound, in which magnetic ions
(B-sites) form a honeycomb lattice. (Black dot: nonmagnetic
A-site). On an xx-bond, the interaction is Sxi S

x
j , etc. For this

structure, the model (3) is identical to the Kitaev model.
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FIG. 4. The spin canting angle # (in units of !) as a function
of the tetragonal distortion parameter %. Inset shows a sketch of
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% ’ '=5, one has # ¼ ! exactly. The spin-flop transition from
the in-plane canted spin state to a collinear Néel ordering along
z-axis occurs at % ¼ '=4.
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Depending on the bond direction, only 
specific spin component interact.

Ground state of the pure Kitaev model: Spin liquid

Is there Kitaev spin liquid 
in the vicinity of Na2IrO3?



ab initio Hamiltonian of Na2IrO3
(Y. Yamaji et al. Phys. Rev. Lett. 113, 107201(2014))
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Honeycomb Lattice Iridates Na2IrO3

under Strong Spin-Orbit Interaction and Electron Correlation
Studied by Ab Initio Scheme

Youhei Yamaji, Yusuke Nomura, Moyuru Kurita, Ryotaro Arita and Masatoshi Imada
Department of Applied Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.

(Dated: February 6, 2014)

An effective low-energy Hamiltonian of itinerant electrons for iridium oxide Na2IrO3 is derived
by an ab initio downfolding scheme. The model is then reduced to an effective spin model on a
honeycomb lattice by the strong coupling expansion. Here we show that the ab initio model contains
spin-spin anisotropic exchange terms in addition to the extensively studied Kitaev and Heisenberg
exchange interactions, and allows to describe the experimentally observed zigzag magnetic order,
interpreted as the state stabilized by the antiferromagnetic coupling of the ferromagnetic chains.
We clarify possible routes to realize quantum spin liquids from existing Na2IrO3.

Introduction.— Cooperation and competition be-
tween strong electron correlations and spin-orbit cou-
plings have recently attracted much attention. Iridium
oxides offer playgrounds for such an interplay and indeed
exhibit intriguing rich phenomena[1–4].

Especially, a theoretical prediction[1, 2] on the possi-
ble realization of quantum spin liquid state and Majorana
fermion state proven by Kitaev [5] as the ground state of
an exactly solvable model now called Kitaev model has
inspired extensive studies on A2IrO3 (A= Na or Li ) as a
model system to realize the Kitaev spin liquid. However,
although Na2IrO3 is an insulator (presumably Mott in-
sulator) with the optical gap ∼ 0.35 eV[6], it was shown
that Na2IrO3 does not show spin liquid properties exper-
imentally but exhibits a zigzag type magnetic order [7, 8].

The Kitaev-Heisenberg model on the honeycomb
lattice[1, 2, 9–11] was further proposed to describe
Na2IrO3, which includes isotropic superexchange cou-
plings in addition to the Kitaev-type anisotropic nearest-
neighbor Ising interactions whose anisotropy axes depend
on the bond directions. However, it turned out that this
model cannot be straightforwardly consistent with the
zigzag order either. This discrepancy inspired further
studies on suitable low-energy effective hamiltonians for
A2IrO3 with A =Na or Li. First, models with further
neighbor couplings [7, 8, 12, 13] were studied. Addi-
tional Ising anisotropy[14] due to a strong trigonal dis-
tortion, which actually contradicts the distortions in the
experiments [8] and in the ab initio treatments, was also
examined. Quasimolecular orbitals[15], instead of the
atomic orbitals assumed in the Kitaev-Hubbard model
were claimed as a proper choice of the starting point. So
far the origin of the zigzag type antiferromagnetic order
observed for Na2IrO3 and the possible route to realize
the quantum spin liquid are controversial.

In this Letter, we derive an ab initio spin model for
Na2IrO3 and show that trigonal distortions present in
Na2IrO3 in addition to the spin-orbit couplings holds the
key: The simplest and realistic spin model for A2IrO3 will
turn out to modify the Kitaev-Heisenberg hamiltonian by

FIG. 1: (color online): Left panel: Crystal structure of
Na2IrO3. Right panel: Honeycomb lattice with X-, Y -, and
Z-bonds. Same colored bonds indicate the same group. The
x, y, and z axes in defining the t2g-orbitals are illustrated
as directions out of the honeycomb plane. The honeycomb
plane is then perpendicular to (x, y, z) = (1, 1, 1). The dashed
boundary represents a 24-site cluster used later for the exact
diagonalization.

additional anisotropic couplings as

Ĥ =
∑

Γ=X,Y,Z

∑

⟨ℓ,m⟩∈Γ

⃗̂S
T

ℓ JΓ
⃗̂Sm, (1)

where ⃗̂S
T

ℓ = (Ŝx
ℓ , Ŝ

y
ℓ , Ŝ

z
ℓ ) is a vector of SU(2) spin op-

erators. The exchange couplings are given in matrices
JΓ. The summations are over the nearest-neighbor pairs
⟨ℓ,m⟩. The group of bond Γ with Γ=X , Y and Z is de-
fined in Fig. 1. The exchange matrices are parametrized
as

JZ =

⎡

⎣
J I1 I2
I1 J I2
I2 I2 K

⎤

⎦ ,JX =

⎡

⎣
K ′ I ′′2 I ′2
I ′′2 J ′′ I ′1
I ′2 I ′1 J ′

⎤

⎦ ,

JY =

⎡

⎣
J ′′ I ′′2 I ′1
I ′′2 K ′ I ′2
I ′1 I ′2 J ′

⎤

⎦ , (2)

where we choose a real and symmetric parameterization
by using U(1)- and SU(2)-symmetry of electron wave
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An effective low-energy Hamiltonian of itinerant electrons for iridium oxide Na2IrO3 is derived
by an ab initio downfolding scheme. The model is then reduced to an effective spin model on a
honeycomb lattice by the strong coupling expansion. Here we show that the ab initio model contains
spin-spin anisotropic exchange terms in addition to the extensively studied Kitaev and Heisenberg
exchange interactions, and allows to describe the experimentally observed zigzag magnetic order,
interpreted as the state stabilized by the antiferromagnetic coupling of the ferromagnetic chains.
We clarify possible routes to realize quantum spin liquids from existing Na2IrO3.

Introduction.— Cooperation and competition be-
tween strong electron correlations and spin-orbit cou-
plings have recently attracted much attention. Iridium
oxides offer playgrounds for such an interplay and indeed
exhibit intriguing rich phenomena[1–4].

Especially, a theoretical prediction[1, 2] on the possi-
ble realization of quantum spin liquid state and Majorana
fermion state proven by Kitaev [5] as the ground state of
an exactly solvable model now called Kitaev model has
inspired extensive studies on A2IrO3 (A= Na or Li ) as a
model system to realize the Kitaev spin liquid. However,
although Na2IrO3 is an insulator (presumably Mott in-
sulator) with the optical gap ∼ 0.35 eV[6], it was shown
that Na2IrO3 does not show spin liquid properties exper-
imentally but exhibits a zigzag type magnetic order [7, 8].

The Kitaev-Heisenberg model on the honeycomb
lattice[1, 2, 9–11] was further proposed to describe
Na2IrO3, which includes isotropic superexchange cou-
plings in addition to the Kitaev-type anisotropic nearest-
neighbor Ising interactions whose anisotropy axes depend
on the bond directions. However, it turned out that this
model cannot be straightforwardly consistent with the
zigzag order either. This discrepancy inspired further
studies on suitable low-energy effective hamiltonians for
A2IrO3 with A =Na or Li. First, models with further
neighbor couplings [7, 8, 12, 13] were studied. Addi-
tional Ising anisotropy[14] due to a strong trigonal dis-
tortion, which actually contradicts the distortions in the
experiments [8] and in the ab initio treatments, was also
examined. Quasimolecular orbitals[15], instead of the
atomic orbitals assumed in the Kitaev-Hubbard model
were claimed as a proper choice of the starting point. So
far the origin of the zigzag type antiferromagnetic order
observed for Na2IrO3 and the possible route to realize
the quantum spin liquid are controversial.

In this Letter, we derive an ab initio spin model for
Na2IrO3 and show that trigonal distortions present in
Na2IrO3 in addition to the spin-orbit couplings holds the
key: The simplest and realistic spin model for A2IrO3 will
turn out to modify the Kitaev-Heisenberg hamiltonian by

FIG. 1: (color online): Left panel: Crystal structure of
Na2IrO3. Right panel: Honeycomb lattice with X-, Y -, and
Z-bonds. Same colored bonds indicate the same group. The
x, y, and z axes in defining the t2g-orbitals are illustrated
as directions out of the honeycomb plane. The honeycomb
plane is then perpendicular to (x, y, z) = (1, 1, 1). The dashed
boundary represents a 24-site cluster used later for the exact
diagonalization.
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Ĥ =
∑

Γ=X,Y,Z

∑

⟨ℓ,m⟩∈Γ

⃗̂S
T

ℓ JΓ
⃗̂Sm, (1)

where ⃗̂S
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ℓ = (Ŝx
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ℓ ) is a vector of SU(2) spin op-

erators. The exchange couplings are given in matrices
JΓ. The summations are over the nearest-neighbor pairs
⟨ℓ,m⟩. The group of bond Γ with Γ=X , Y and Z is de-
fined in Fig. 1. The exchange matrices are parametrized
as

JZ =

⎡

⎣
J I1 I2
I1 J I2
I2 I2 K

⎤

⎦ ,JX =

⎡

⎣
K ′ I ′′2 I ′2
I ′′2 J ′′ I ′1
I ′2 I ′1 J ′

⎤

⎦ ,
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⎡

⎣
J ′′ I ′′2 I ′1
I ′′2 K ′ I ′2
I ′1 I ′2 J ′

⎤

⎦ , (2)
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Introduction.— Cooperation and competition be-
tween strong electron correlations and spin-orbit cou-
plings have recently attracted much attention. Iridium
oxides offer playgrounds for such an interplay and indeed
exhibit intriguing rich phenomena[1–4].

Especially, a theoretical prediction[1, 2] on the possi-
ble realization of quantum spin liquid state and Majorana
fermion state proven by Kitaev [5] as the ground state of
an exactly solvable model now called Kitaev model has
inspired extensive studies on A2IrO3 (A= Na or Li ) as a
model system to realize the Kitaev spin liquid. However,
although Na2IrO3 is an insulator (presumably Mott in-
sulator) with the optical gap ∼ 0.35 eV[6], it was shown
that Na2IrO3 does not show spin liquid properties exper-
imentally but exhibits a zigzag type magnetic order [7, 8].

The Kitaev-Heisenberg model on the honeycomb
lattice[1, 2, 9–11] was further proposed to describe
Na2IrO3, which includes isotropic superexchange cou-
plings in addition to the Kitaev-type anisotropic nearest-
neighbor Ising interactions whose anisotropy axes depend
on the bond directions. However, it turned out that this
model cannot be straightforwardly consistent with the
zigzag order either. This discrepancy inspired further
studies on suitable low-energy effective hamiltonians for
A2IrO3 with A =Na or Li. First, models with further
neighbor couplings [7, 8, 12, 13] were studied. Addi-
tional Ising anisotropy[14] due to a strong trigonal dis-
tortion, which actually contradicts the distortions in the
experiments [8] and in the ab initio treatments, was also
examined. Quasimolecular orbitals[15], instead of the
atomic orbitals assumed in the Kitaev-Hubbard model
were claimed as a proper choice of the starting point. So
far the origin of the zigzag type antiferromagnetic order
observed for Na2IrO3 and the possible route to realize
the quantum spin liquid are controversial.

In this Letter, we derive an ab initio spin model for
Na2IrO3 and show that trigonal distortions present in
Na2IrO3 in addition to the spin-orbit couplings holds the
key: The simplest and realistic spin model for A2IrO3 will
turn out to modify the Kitaev-Heisenberg hamiltonian by

FIG. 1: (color online): Left panel: Crystal structure of
Na2IrO3. Right panel: Honeycomb lattice with X-, Y -, and
Z-bonds. Same colored bonds indicate the same group. The
x, y, and z axes in defining the t2g-orbitals are illustrated
as directions out of the honeycomb plane. The honeycomb
plane is then perpendicular to (x, y, z) = (1, 1, 1). The dashed
boundary represents a 24-site cluster used later for the exact
diagonalization.

additional anisotropic couplings as

Ĥ =
∑

Γ=X,Y,Z

∑

⟨ℓ,m⟩∈Γ

⃗̂S
T

ℓ JΓ
⃗̂Sm, (1)

where ⃗̂S
T

ℓ = (Ŝx
ℓ , Ŝ

y
ℓ , Ŝ

z
ℓ ) is a vector of SU(2) spin op-

erators. The exchange couplings are given in matrices
JΓ. The summations are over the nearest-neighbor pairs
⟨ℓ,m⟩. The group of bond Γ with Γ=X , Y and Z is de-
fined in Fig. 1. The exchange matrices are parametrized
as

JZ =

⎡

⎣
J I1 I2
I1 J I2
I2 I2 K

⎤

⎦ ,JX =

⎡

⎣
K ′ I ′′2 I ′2
I ′′2 J ′′ I ′1
I ′2 I ′1 J ′

⎤

⎦ ,

JY =

⎡

⎣
J ′′ I ′′2 I ′1
I ′′2 K ′ I ′2
I ′1 I ′2 J ′

⎤

⎦ , (2)

where we choose a real and symmetric parameterization
by using U(1)- and SU(2)-symmetry of electron wave

x-bond

y-bond

z-bond

x
y

z

(1, 1, 1)

Kitaev coupling K and Heisenberg like coupling J 

Off-diagonal couplings I1 and I2
+

ab initio Hamiltonian

It also contains J2 and J3 interaction term.

J2

J3

J2 : only “z-bond” which is perpendicular to NN z-bond.

J3 : all of the three third neighbors

Due to the trigonal distortion, the ab initio Hamiltonian contains strong 
off-diagonal couplings, together with J2 and J3 interaction



Results: comparison with other methods

Energies of iTPS, DMRG and ED are consistent.

• For 4 × 6 lattice, DMRG and ED  
give almost same energy. 

• Finite D of iTPS and finite Lx of DMRG 
are overlapped.

• Extrapolations of them are <M> ~ 0.3 
• Spins are almost along (1,1,0) direction,  

which is consistent with the experimental 
 observations.

Zigzag(Z) order parameters are consistent.
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Stability of the Zigzag(Z) state in the thermodynamic 
limit is confirmed by iTPS calculation.



Phase diagram varying the trigonal distortion
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Lattice expansion

• iTPS phase diagram is qualitatively consistent with the ED. 
• Around Δ=0, a Kitaev spin liquid phase is clearly stabilized.

Local magnetizationEnergy and Phase diagram
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FIG. 3: (color online): (a) ∆-dependence of matrix elements
of JZ , JX as functions of ∆. Around the ab initio values
at ∆ (∼ −28 meV) listed in Table II, K < 0, K′ < 0,
J > 0, J ′ > 0, and J ′′ > 0 are stably satisfied with grad-
ual dependences on ∆. (b) Ground state pahse diagram for
Na2IrO3 with lattice distortions represented by changes in ∆.
The phase boundaris are determined by anomalies in second
derivatives of the exact energy for the 24-site cluster with re-
spect to ∆. Around the ab initio parameter ∆ = −28 meV,
the zigzag order appears. By increasing ∆, a 6-site unit cell
order (or 120◦-structure[27]) illustrated in the lower left panel
and a 24-site unit cell long-period order[23], appear. (c) ∆-
dependence of the ground state of the generalized Kitaev-
Heisenberg model for “expanded lattices.” Here we neglect
the small hopping parameters other than t and take a larger
Hund coupling JH = 0.3 eV. Spin liquid phases compete with
ferromagnetic states and 12-site unit cell orders illustrated in
the lower right panel[23].
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84, 024406 (2011).

[14] S. Bhattacharjee, S.-S. Lee, and Y. B. Kim, New Journal
of Physics 14, 073015 (2012).

[15] I. I. Mazin, H. O. Jeschke, K. Foyevtsova, R. Valent́ı, and
D. I. Khomskii, Phys. Rev. Lett. 109, 197201 (2012).

[16] T. Miyake and M. Imada, J. Phys. Soc. Jpn. 79, 112001
(2010).

[17] http://elk.sorceforge.net/.
[18] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244

(1992).
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 If we can expand 
the lattice constant,  

 we probably find spin liquid material !
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Summary

• By using tensor network representation, we can largely compress the information 
into compact forms. 
• A partition function in the statistical physics can be represented by a tensor 

network 
• Its contraction can be done efficiently by tensor network renormalization 

technique.  
• By using MPI parallelization, 4d (3+1 d) calculation becomes realistic. 

• We can approximate low energy wave function by using tensor network 
states. 
• Efficiency is guaranteed by the area law of the entanglement entropy 
• We can represent infinite systems with finite bond dimensions D. 
• MPI parallel code TeNeS is available. 
• For 2d frustrated spin systems, iTPS is one of the most powerful methods.



Outlook

• Application to difficult problems  
• Excitation spectrums 
• Finite temperature properties 
• (Lattice QCD) 

• Nowadays, tensor network representations expand their application to other fields. 
• Machine learning for classification problem with MPS  

• E. Miles Stoudenmire and D. J. Schwab, NIPS 2016 

• Unsupervised Generative Modeling 
• Born machine instead of Boltzmann machine  

• S. Cheng et al, Phys. Rev. B 99, 155131 (2019) 

• Z.-Y. Han et al, Phys. Rev. X 8, 031012 (2018).  

• Quantum circuit simulation 
• A. McCaskey et al, PLoS One 13 e0206704 (2018). (MPS) 

• C. Guo et al, Phys. Rev. Lett. 123, 190501 (2019). (TPS)
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W

often results in severely growing bond dimensions, and this can be remedied by a more judi-
cious tensor network form [38], its computational convenience and well understood theory
makes the MPS factorization an appealing first candidate for our quantum virtual machine
(quantum circuit simulator). In future, we plan on adding more advanced tensor network
architectures, however.

In order to simulate a general quantum circuit over an N-qubit register with the tensor net-
work machinery the following steps will be necessary (see Fig 2):

1. Specify the chosen tensor network graph that factorizes the rank-N wave-function tensor
into a contracted product of lower-rank tensors (factors). For example, one may choose the
MPS factorization as done in Fig 2.

2. Transform the quantum circuit into an equivalent quantum circuit augmented with SWAP
gates in order to maximize the number of accelerated gate applications (see below). This is
an optional step.

Fig 2. Graphical illustration of the general quantum circuit simulation algorithm with the multi-qubit wave-function factorized as the MPS
tensor network. Gate coloring represents aggregation of individual gates into super-gates, which act as a whole. The figure shows progression of super-
gate actions on the MPS tensor network. Multiple super-gates may be involved in a single action. Each action results in an updated MPS tensor network
(output tensor network). Note that the application of a super-gate does not necessarily affect all output MPS tensors, only requiring an update of a
subset of them that is actually affected by the super-gate. In general, the affected tensors are determined by the qubits involved in the super-gate as well
as the specific tensor network architecture.

https://doi.org/10.1371/journal.pone.0206704.g002
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