Computing Matrix Functions on the K Computer

William Dawson Takahito Nakajima RIKEN Center for Computational Science

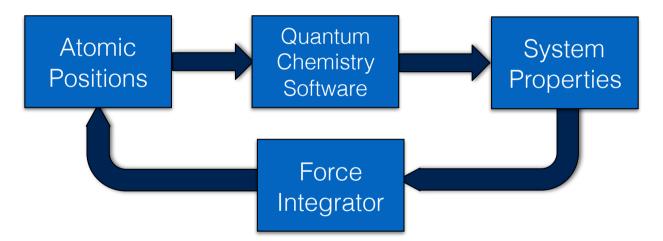
2018年度第2回計算科学フォーラム

Computational Molecular Science Research Team

 Also in collaboration with <u>Luigi Genovese</u> (French Alternative Energies and Atomic Energy Commission), <u>Marco Zaccaria</u> (Boston College), <u>Massimo Reverberi</u> (Sapienza University of Rome).

Introduction to Computational Chemistry

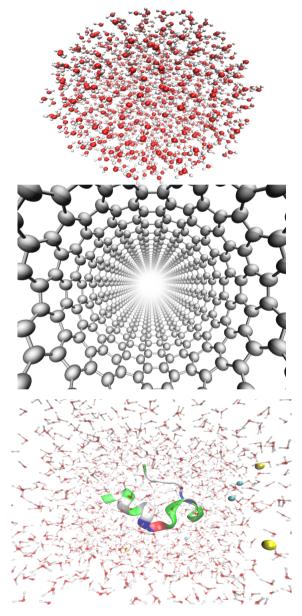
 In our team, we work to develop software and methods for understanding molecules and materials from according to the laws of quantum mechanics.



- Quantum chemistry software gives us atomic level insight, allowing us to go beyond the technical limits of experiment.
- Calculation quantities: band gaps, chemical reactions, rate constants, durability, etc.

Introduction - Large Scale Calculations

- Large uniform environment with small perturbation (e.g. dilute solutions).
- Large Nanostructures (e.g. Carbon Nanotubes).
- Molecules in a realistic environment (e.g. proteins).
- Not only perform calculations on the system, but also to gain insight into the actual chemistry.
- These calculations require clever algorithms, and large computational resources.



Ratcliff, Laura E., Stephan Mohr, Georg Huhs, Thierry Deutsch, Michel Masella, and Luigi Genovese. "Challenges in large scale quantum mechanical calculations." *Wiley Interdisciplinary Reviews: Computational Molecular Science* 7, no. 1 (2017): e1290.

<u>Outline</u>

- Introduction to Matrix Functions
 - Formal Definition
 - Methods of Computing Matrix Functions
 - Motivating Matrices
 - NTPoly introduction
- Parallelization Techniques
 - Distributed Memory
 Parallelization
 - On Node Parallelization

- Usability Considerations
 - Data Distribution
 - Programming Language Support
- Example Applications
 - Quantum Chemistry
 - Social Network Analysis
 - Search Engine Optimization

Introduction to Matrix Functions

Introduction to Matrix Functions

Cauchy integral definition:

$$f(A) \coloneqq \frac{1}{2\pi i} \int_{\Gamma} f(z) \left(zI - A\right)^{-1} dz$$

where f is analytic on and inside a closed contour Γ that encloses the spectrum of A.

Simple definition: We are all familiar with functions of a single variable f(x). In the matrix function case, just replace the variable x with a matrix A.

Standard Function	Matrix Function	Interpretation
$f(x) = x^2$	$f(A) = A^2$	Matrix Product
f(x) = 1/x	$f(A) = A^{-1}$	Matrix Inverse
$f(x) = e^x$	$f(A) = e^A$	Matrix Differential Equation
f(x) = sign(x)	f(A) = sign(A)	Projection on to Subspace

Higham, Nicholas J. Functions of matrices: theory and computation. Vol. 104. Siam, 2008.

Motivating Applications

• Solving the generalized eigenvalue equation.

Ax = $\lambda Bx => B^{-1/2}AB^{-1/2}x = \lambda x$ (if B is SPD).

• Constructing good preconditioners.

 $Ax = c \Rightarrow BAx = Bc$, where $B \approx A^{-1}$.

• Computing centrality measures of a network.

A: the adjacency matrix of a graph.

Kantz centrality: (I - α A)⁻¹

Estrada Centrality: e^{βA}

• Solution to Sylvester equation, algebraic Ricatti, etc.

Motivating Applications - Chemistry

- Diagonalization free methods for quantum chemistry.
- Given the hamiltonian matrix H, we wish to construct the density matrix D.
- Usually we do this by solving the eigenvalue equation:

 $HV = \lambda V$ (where V is a n_{basis} x n_{electrons} matrix).

- And compute the density matrix as $D = VV^{T}$.
- Instead, we can compute the density matrix directly using the fermi function:

 $D = 1/(e^{\beta(H-\mu)} + I).$

Methods for Computing Matrix Functions

1. Diagonalization (if possible):

 $A = ZDZ^{-1}.$

 $f(A) = Zf(D)Z^{-1}.$

- 2. Schur Decomposition (explicit formulas exist for upper triangular matrices exist).
- 3. Taylor series expansion:

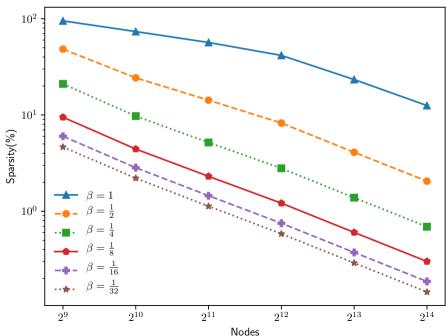
 $\cos(A) = I - A^2/2! + A^4/4! + A^6/6! \dots$

4. Polynomial Approximation (and Rational Approximation).

5. From each function's definition (A^{-1} : $A^*X = I$).

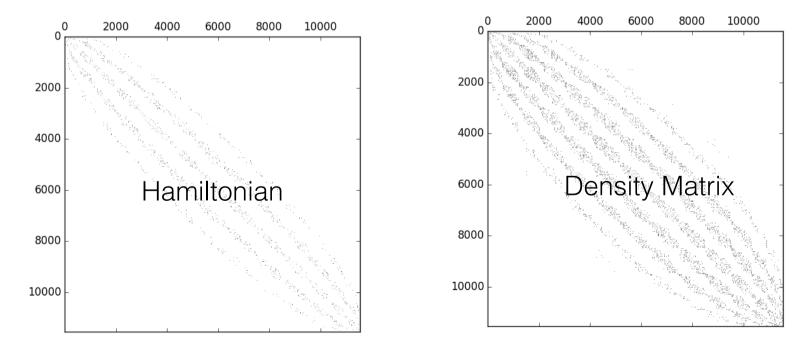
Motivating Matrices

- In many domains, the problem of interest can be represented using a sparse, hermitian matrix.
- Under certain conditions, not only is the matrix A sparse, but also some matrix functions f(A) are sparse.
- Estrada matrix exponential e^{βA} contains a scaling factor which might be interpreted as a unit of edge weight.
- For certain values of β, the matrix exponential of small world matrices is also sparse.



Motivating Matrices - Chemistry

- For insulating systems (and metals at high temperature), it is known that the density matrix is sparse when represented in a localized basis.
- Example: the Hamiltonian and Density Matrix of 1920 water molecules computed using the BigDFT code.



http://bigdft.org/ 12

Sparsity Aware Matrix Function Calculation

• From the list of methods for computing matrix functions, we will select calculations based on matrix polynomials.

e.g. Chebysehv polynomials: $f(A) \approx \sum c_i T_i(x)$.

 $T_{0}(A) = I T_{2}(A) = 2A^{2} - I T_{4}(A) = 8A^{4} - 8A^{2} + I T_{1}(A) = A T_{3}(A) = 4A^{3} - 3A \dots$

- Computing a matrix polynomial requires only two core routines: matrix addition, <u>matrix multiplication</u>.
 - Easy to parallelize.
 - Many functions can be tuned through just two routines.
- In the case of sparse matrices, we replace these kernels with sparse matrix addition, and <u>sparse matrix multiplication</u>.

NTPoly - A Library for Computing Matrix Functions

- General Polynomials
 - Standard Polynomials
 - Chebyshev Polynomials
 - Hermite Polynomials
- Transcendental Functions
 - Trigonometric Functions
 - Exponential and Logarithm
- Matrix Roots
 - Square Root and Inverse Square Root
 - Matrix *p*th Root and Inverse *p*th root

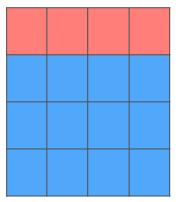
- Quantum Chemistry
 - Density Matrix Minimization
 - Density Matrix Purification
 - Chemical Potential Calculation
 - Density Matrix Extrapolation
- Other
 - Matrix Inverse (and Moore-Penrose Inverse)
 - Sign Function/Polar Decomposition
 - Parallel File I/O
 - MIT License (available on Github)

Parallelization Techniques

Matrix Multiplication Parallelization - 2.5D

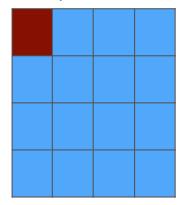
1D Algorithm: Each processor has a matrix slice

Start With A Slice



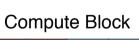
Receive Columns

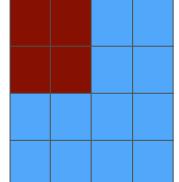
Compute Element



2D Algorithm: Each processor has a matrix block

Receive Blocks

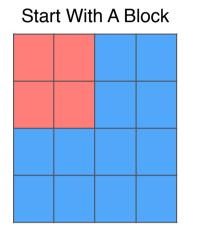




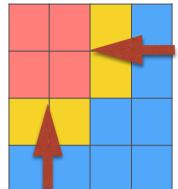
Schatz, Martin D., Robert A. Van de Geijn, and Jack Poulson. "Parallel matrix multiplication: A systematic journey." *SIAM Journal on Scientific Computing* 38, no. 6 (2016): C748-C781.

Matrix Multiplication Parallelization - 2.5D

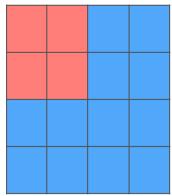
2.5D Algorithm: Duplicate In Z Direction

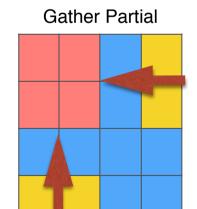


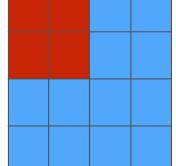
Gather Blocks



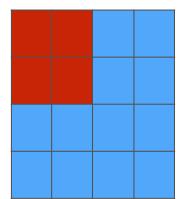
Block Copy

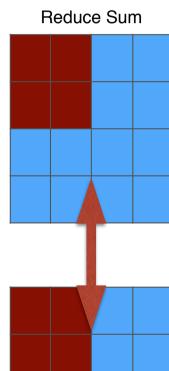






Partial 2

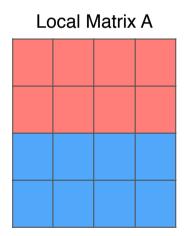


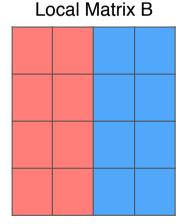


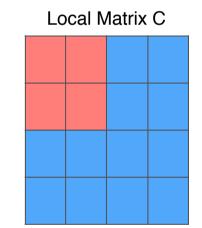
Solomonik, Edgar, and James Demmel. "Communication-optimal parallel 2.5 D matrix multiplication and LU factorization algorithms." In *European Conference on Parallel Processing*, pp. 90-109. Springer, Berlin, Heidelberg, 2011.

Matrix Multiplication Parallelization - OpenMP

- Important to have a hybrid OpenMP/MPI implementation to target future architectures.
- Main idea: thread parallel over matrix blocks.
- Local blocked matrix multiply works like dense multiply.



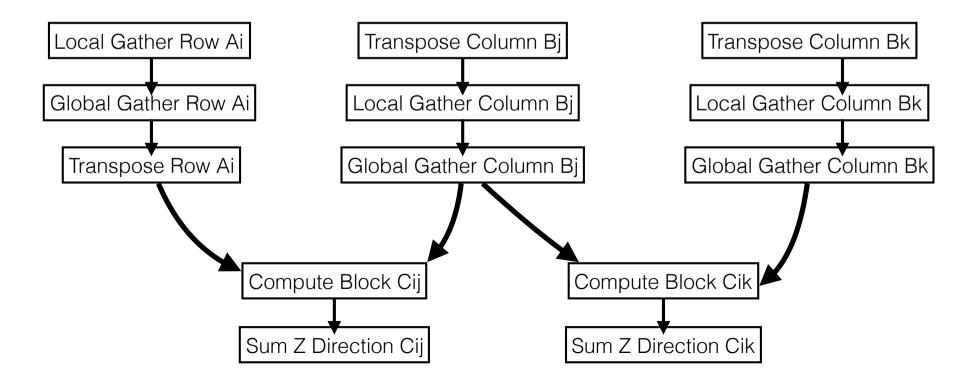




- Can also block the communication, allowing for overlapping of communication and computation.
- Little overhead for blocking.

Matrix Multiplication Parallelization - OpenMP

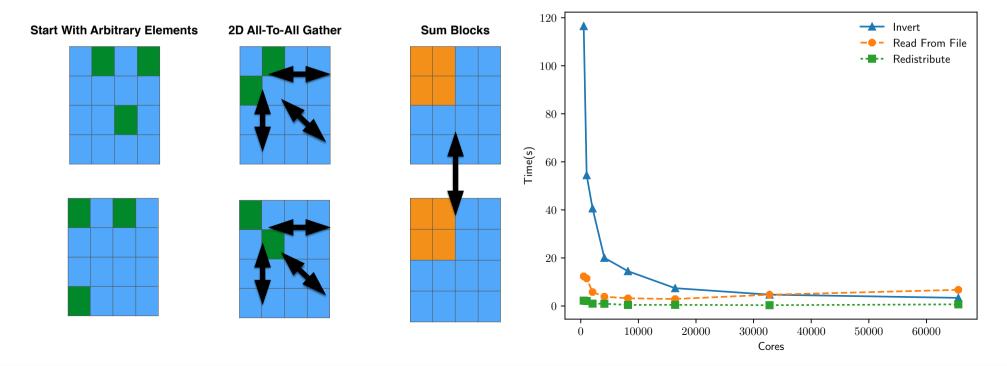
- OpenMP loop parallelism doesn't work well with overlapping communication. Instead we use OpenMP task framework.
- Creating a task manager, and dependency graph.



Usability Considerations

Usability Considerations

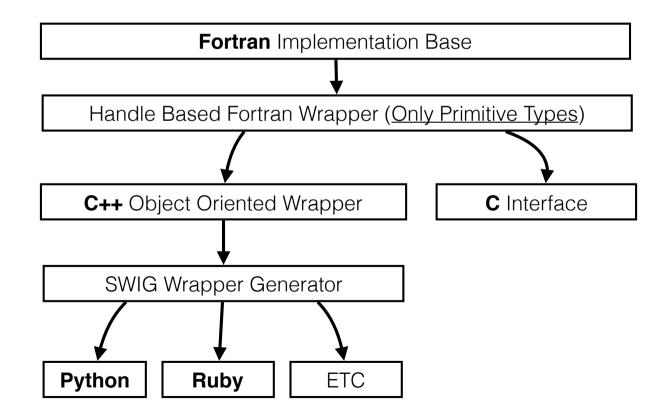
- Challenge: Integrate With Parallel Programs Using a Variety of Different Data Layouts.
- Solution 1: Parallel File I/O through the standard matrix market format for rapid prototyping.
- Solution 2: Arbitrary Data Remapping Routines.



Usability Considerations - 2

Challenge: Integration with codes written in a variety of programming language.

Solution: Programming Language Wrapper Hierarchy.



Programming Language Support - Details

Using complex data types makes life easier in Fortran, but makes it harder to call from other languages.

! Complex Fortran Data Type
TYPE :: DistributedSparseMatrix_t
! Simple data
INTEGER :: matrix_dimension
INTEGER :: start_column, end_column
! Variety of members
TYPE(ProcessGrid_t) :: grid
! Also contains allocatable subtypes
TYPE(LocalMatrix_t), DIMENSION(:,:), ALLOCATABLE :: local_data
END TYPE
SUBROUTINE ComputeExponential(InputMat, OutputMat)
TYPE(DistributedSparseMatrix_t), INTENT(in) :: InputMat
TYPE(DistributedSparseMatrix_t), INTENT(inout) :: OutputMat
! Solver Logic
END SUBROUTINE

Pletzer, Alexander, Douglas McCune, Stefan Maszala, Srinath Vadlamani, and Scott Kruger. "Exposing Fortran derived types to C and other languages." *Computing in Science & Engineering* 10, no. 4 (2008): 86-92.

Programming Language Support - 2

To simplify things, we will only expose handles to data objects.

TYPE :: DistributedSparseMatrix_wrp ! Handle Datatype
TYPE(DistributedSparseMatrix_t), POINTER :: DATA
END TYPE
SUBROUTINE ConstructMatrix_wrp(ih_this)
INTEGER(kind=c_int), INTENT(INOUT) :: ih_this(SIZE_wrp) ! SIZE_wrp is size of a pointer struct.
TYPE(DistributedSparseMatrix_wrp) :: this
ALLOCATE(this%data)
<pre>ih_this = TRANSFER(this,ih_this) ! Convert between handle and integer.</pre>
END SUBROUTINE
SUBROUTINE ComputeExponential_wrp(ih_InputMat, ih_OutputMat) bind(c,name="ComputeExponential_wrp")
INTEGER(kind=c_int), INTENT(in) :: ih_InputMat(SIZE_wrp)
INTEGER(kind=c_int), INTENT(inout) :: ih_OutputMat(SIZE_wrp)
TYPE(DistributedSparseMatrix_wrp) :: InputMat
TYPE(DistributedSparseMatrix_wrp) :: OutputMat
<pre>InputMat = TRANSFER(ih_InputMat,InputMat)</pre>
OutputMat = TRANSFER(ih_OutputMat,OutputMat)
CALL ComputeExponential(InputMat%data, OutputMat%data)
END SUBROUTINE

Programming Language Support - 3

C Interface is now simple to expose.

	11	С	Routine	То	Call
--	----	---	---------	----	------

void ConstructMatrix_wrp(int *ih_this);

void ComputeExponential_wrp(const int *ih_Input, int *ih_Output);

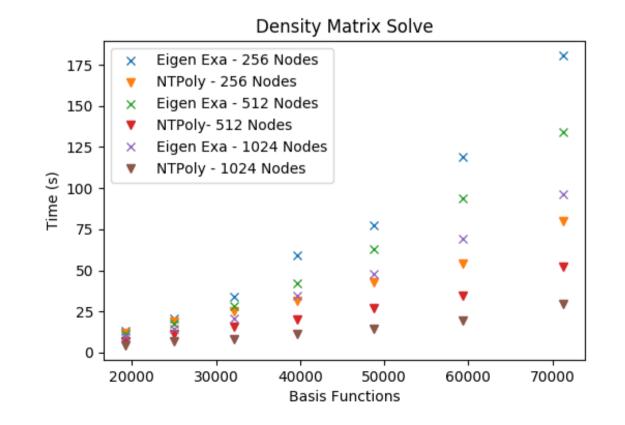
C++ Uses the same interface

class DistributedSparseMatrix {	
public:	
DistributedSparseMatrix() {	
ConstructMatrix_wrp(this->handle);	
}	
int handle[SIZE_wrp];	
};	
·	
void ComputeExponential(const DistributedSparseMatrix &InputM	at,
DistributedSparseMatrix &OutputMat) {	
ComputeExponential_wrp(InputMat.handle, OutputMat.handle);	
· · · · · · · · · · · · · · · · · · ·	

Example Applications

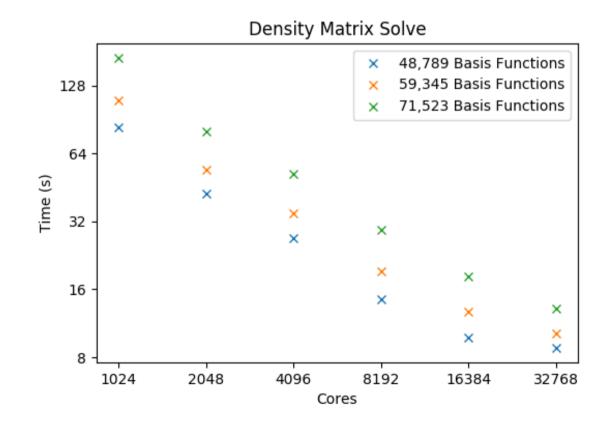
Quantum Chemistry

- Standard eigensolvers can make limited use of the sparsity of a matrix, but will be outperform by matrix function based approaches.
- Calculation of water clusters of various sizes, 631G basis set, using the TRS2 density matrix method to approximate the fermi function.

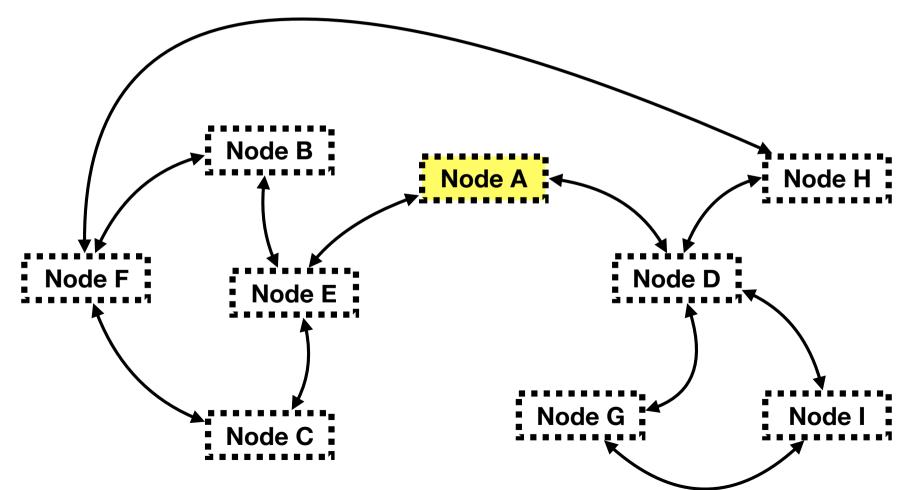


Quantum Chemistry - 2

• Use of communication avoiding algorithms and task based openmp parallelization allows for calculations using tens of thousands of cores.

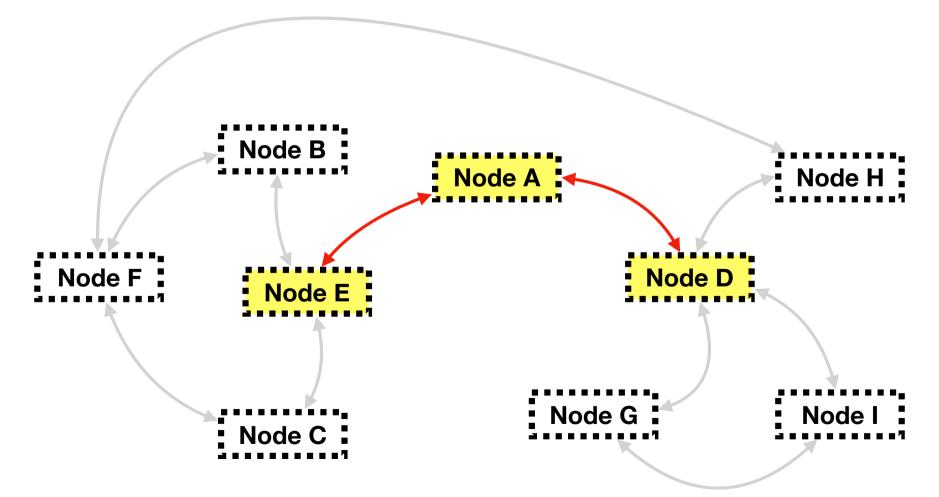


- Estrada's Scaled Matrix Exponential Metric: e^{βA}
- Example, social networks:

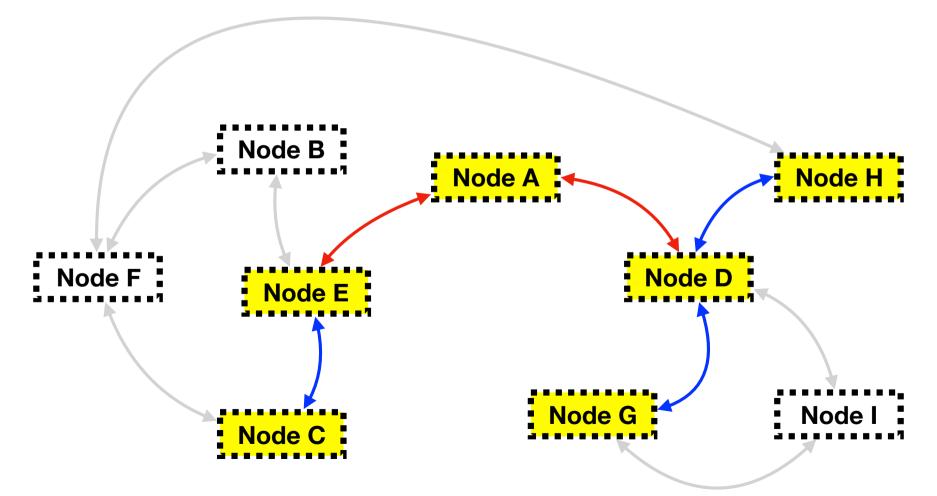


Estrada, Ernesto, Naomichi Hatano, and Michele Benzi. "The physics of communicability in complex networks." Physics reports 514, no. 3 (2012): 89-119. 29

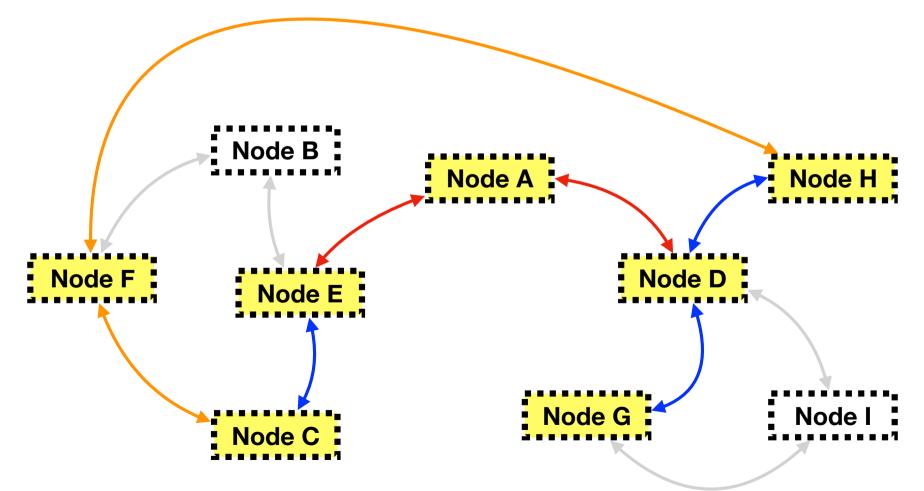
- Estrada's Scaled Matrix Exponential Metric: e^{βA}
- Example, social networks:



- Estrada's Scaled Matrix Exponential Metric: e^{βA}
- Example, social networks:

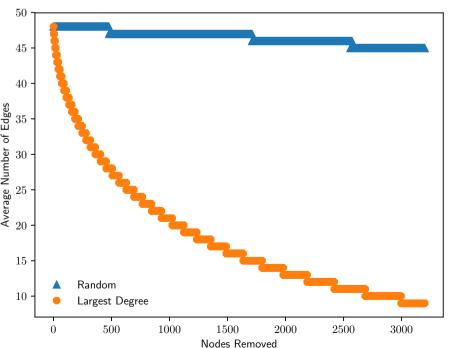


- Estrada's Scaled Matrix Exponential Metric: e^{βA}
- Example, social networks:



Social Network Analysis - In Practice

- Network Resiliency calculations:
 - Data Set: Israeli Social Network "TheMarker Cafe"
 - Nodes: 69413. Sparsity: 0.04%.
- Procedure:
 - Remove a node from the graph
 - Random Node
 - Random Node
 Node with largest degree
 Compute the matrix exponential ²⁵/₂₀
 - Compute the sparsity
 - Repeat

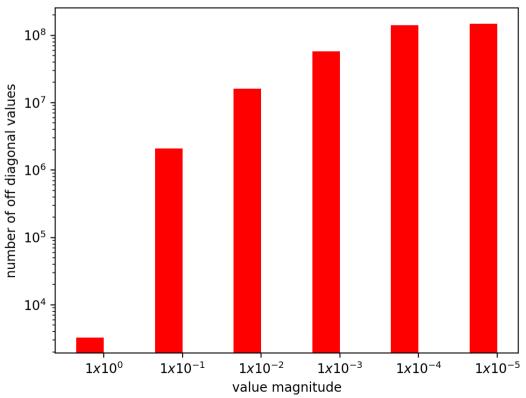


Search Engine Optimization

- Finding important nodes in a directed network.
- Going beyond page rank by ranking nodes as <u>Authorities</u> and <u>Hubs</u>. Authorities are important nodes, hubs point to authorities.
- Matrix functions to compute:
 - Hub similarity matrix: $H = \cosh(\sqrt{AA^{T}})$.
 - Authority similarity matrix: $A = \cosh(\sqrt{A^T}A)$.
- Calculation Method:
 - Scaling and squaring method with Chebyshev polynomials: cosh(√4x) = 2cosh²√x - 1.

Search Engine Optimization - 2

- Authority similarity for the High Energy Physics Phenomenology citation graph.
- 34,546 papers, 421,578 citations.
- Largest eigenvalue is > 3000, so some scaling factor is necessary.
- Sparsity:
 - A: ~0.04%.
 - AA^T: ~1%
 - cosh(√(βΑΑ^T)): 31%.



Conclusion

- Matrix functions have a number of different applications, motivating the creation of new libraries.
- Using sparse matrix algebra techniques, low order scaling techniques exist to compute the functions of sparse matrices.
- A combination of communication avoiding algorithms and task based parallelization enable strong scaling, massively parallel calculations.
- Automated data redistribution techniques, parallel file i/o using standard formats, and support for many programming languages leads to an easy to use library.
- Applications to quantum chemistry, graph analysis, and more.
- https://william-dawson.github.io/NTPoly/