
!1

Computing Matrix Functions on the
K Computer

William Dawson
Takahito Nakajima

RIKEN Center for Computational Science

2018年度第2回計算科学フォーラム

!2

• Also in collaboration with Luigi Genovese (French Alternative Energies and Atomic Energy
Commission), Marco Zaccaria (Boston College), Massimo Reverberi (Sapienza University of
Rome).

Computational Molecular Science Research
Team

Introduction to Computational Chemistry

!3

• In our team, we work to develop software and methods
for understanding molecules and materials from
according to the laws of quantum mechanics.

Atomic
Positions

Quantum
Chemistry
Software

System
Properties

Force
Integrator

• Quantum chemistry software gives us atomic level insight,
allowing us to go beyond the technical limits of experiment.

• Calculation quantities: band gaps, chemical reactions, rate
constants, durability, etc.

!4

• Large uniform environment with
small perturbation (e.g. dilute
solutions).

• Large Nanostructures (e.g. Carbon
Nanotubes).

• Molecules in a realistic environment
(e.g. proteins).

• Not only perform calculations on the
system, but also to gain insight into
the actual chemistry.

• These calculations require clever
algorithms, and large computational
resources.

Introduction - Large Scale Calculations

Ratcliff, Laura E., Stephan Mohr, Georg Huhs, Thierry Deutsch, Michel Masella, and Luigi Genovese. "Challenges in large scale quantum mechanical
calculations." Wiley Interdisciplinary Reviews: Computational Molecular Science 7, no. 1 (2017): e1290.

Outline

!5

• Introduction to Matrix
Functions

• Formal Definition

• Methods of Computing

Matrix Functions

• Motivating Matrices

• NTPoly introduction

• Parallelization Techniques

• Distributed Memory

Parallelization

• On Node Parallelization

• Usability Considerations

• Data Distribution

• Programming Language

Support

• Example Applications

• Quantum Chemistry

• Social Network Analysis

• Search Engine

Optimization

!6

Introduction to Matrix Functions

Introduction to Matrix Functions

!7

Cauchy integral definition:

where f is analytic on and inside a closed contour 𝚪 that encloses the
spectrum of A.

Simple definition: We are all familiar with functions of a single variable f(x).
In the matrix function case, just replace the variable x with a matrix A.

Standard Function Matrix Function Interpretation

f(x) = x2 f(A) = A2 Matrix Product

f(x) = 1/x f(A) = A-1 Matrix Inverse

f(x) = ex f(A) = eA Matrix Differential Equation

f(x) = sign(x) f(A) = sign(A) Projection on to Subspace

Higham, Nicholas J. Functions of matrices: theory and computation. Vol. 104. Siam, 2008.

Motivating Applications

!8

• Solving the generalized eigenvalue equation.

Ax = 𝝀Bx => B-1/2AB-1/2x = 𝝀x (if B is SPD).

• Constructing good preconditioners.

Ax = c => BAx = Bc, where B ≅ A-1.

• Computing centrality measures of a network.

A: the adjacency matrix of a graph.

Kantz centrality: (I - 𝝰A)-1

Estrada Centrality: eβA

• Solution to Sylvester equation, algebraic Ricatti, etc.

Motivating Applications - Chemistry

!9

• Diagonalization free methods for quantum chemistry.

• Given the hamiltonian matrix H, we wish to construct the
density matrix D.

• Usually we do this by solving the eigenvalue equation:

HV = 𝝀V (where V is a nbasis x nelectrons matrix).

• And compute the density matrix as D = VVT.

• Instead, we can compute the density matrix directly using
the fermi function:

D = 1/(eβ(H-μ) + I).

Methods for Computing Matrix Functions

!10

1. Diagonalization (if possible):

A = ZDZ-1.

f(A) = Zf(D)Z-1.

2. Schur Decomposition (explicit formulas exist for upper
triangular matrices exist).

3. Taylor series expansion:

cos(A) = I - A2/2! + A4/4! + A6/6! …

4. Polynomial Approximation (and Rational Approximation).

5. From each function’s definition (A-1 : A*X = I).

Motivating Matrices

!11
29 210 211 212 213 214

Nodes

100

101

102

S
pa

rs
it
y(

%
)

� = 1

� = 1
2

� = 1
4

� = 1
8

� = 1
16

� = 1
32

• In many domains, the problem of interest can be represented using a sparse,
hermitian matrix.

• Under certain conditions, not only is the matrix A sparse, but also some matrix
functions f(A) are sparse.

• Estrada matrix exponential eβA contains a scaling factor which might be interpreted
as a unit of edge weight.

• For certain values of β, the matrix exponential of small world matrices is also
sparse.

Motivating Matrices - Chemistry

!12

• For insulating systems (and metals at high temperature), it
is known that the density matrix is sparse when
represented in a localized basis.

• Example: the Hamiltonian and Density Matrix of 1920
water molecules computed using the BigDFT code.

Density MatrixHamiltonian

http://bigdft.org/

Sparsity Aware Matrix Function Calculation

!13

• From the list of methods for computing matrix functions, we
will select calculations based on matrix polynomials.

e.g. Chebysehv polynomials: f(A) ≅ ∑ciTi(x).

T0(A) = I T2(A) = 2A2 - I T4(A) = 8A4 - 8A2 + I

T1(A) = A T3(A) = 4A3 - 3A …

• Computing a matrix polynomial requires only two core
routines: matrix addition, matrix multiplication.

• Easy to parallelize.

• Many functions can be tuned through just two routines.

• In the case of sparse matrices, we replace these kernels with
sparse matrix addition, and sparse matrix multiplication.

NTPoly - A Library for Computing Matrix
Functions

• General Polynomials

• Standard Polynomials

• Chebyshev Polynomials

• Hermite Polynomials

• Transcendental Functions

• Trigonometric Functions

• Exponential and Logarithm

• Matrix Roots

• Square Root and Inverse
Square Root

• Matrix pth Root and Inverse
pth root

• Quantum Chemistry

• Density Matrix Minimization

• Density Matrix Purification

• Chemical Potential Calculation

• Density Matrix Extrapolation

• Other

• Matrix Inverse (and Moore-
Penrose Inverse)

• Sign Function/Polar
Decomposition

• Parallel File I/O

• MIT License (available on
Github)

!14
Dawson, William, and Takahito Nakajima. "Massively parallel sparse matrix function calculations with NTPoly."
Computer Physics Communications 225 (2018): 154-165.

!15

Parallelization Techniques

Matrix Multiplication Parallelization - 2.5D

!16

Start With A Slice

1D Algorithm: Each processor has a matrix slice
Receive Columns Compute Element

2D Algorithm: Each processor has a matrix block
Start With A Block Receive Blocks Compute Block

Schatz, Martin D., Robert A. Van de Geijn, and Jack Poulson. "Parallel matrix multiplication: A systematic journey." SIAM Journal on
Scientific Computing 38, no. 6 (2016): C748-C781.

Matrix Multiplication Parallelization - 2.5D

!17

2.5D Algorithm: Duplicate In Z Direction
Start With A Block Gather Blocks Partial Contribution

Block Copy Gather Partial Partial 2

Reduce Sum

Solomonik, Edgar, and James Demmel. "Communication-optimal parallel 2.5 D matrix multiplication and LU factorization algorithms." In European
Conference on Parallel Processing, pp. 90-109. Springer, Berlin, Heidelberg, 2011.

Matrix Multiplication Parallelization - OpenMP

!18

• Important to have a hybrid OpenMP/MPI implementation to target
future architectures.

• Main idea: thread parallel over matrix blocks.

• Local blocked matrix multiply works like dense multiply.

• Can also block the communication, allowing for overlapping of
communication and computation.

• Little overhead for blocking.

Local Matrix A Local Matrix B Local Matrix C

Matrix Multiplication Parallelization - OpenMP

!19

• OpenMP loop parallelism doesn’t work well with
overlapping communication. Instead we use OpenMP
task framework.

• Creating a task manager, and dependency graph.

Local Gather Row Ai Transpose Column Bj

Local Gather Column BjGlobal Gather Row Ai

Global Gather Column Bj

Compute Block Cij

Sum Z Direction Cij

Transpose Column Bk

Local Gather Column Bk

Global Gather Column Bk

Compute Block Cik

Sum Z Direction Cik

Transpose Row Ai

!20

Usability Considerations

Usability Considerations

!21
0 10000 20000 30000 40000 50000 60000

Cores

0

20

40

60

80

100

120

T
im

e(
s)

Invert

Read From File

Redistribute

Start With Arbitrary Elements 2D All-To-All Gather Sum Blocks

• Challenge: Integrate With Parallel Programs Using a
Variety of Different Data Layouts.

• Solution 1: Parallel File I/O through the standard matrix
market format for rapid prototyping.

• Solution 2: Arbitrary Data Remapping Routines.

Usability Considerations - 2

!22

Challenge: Integration with codes written in a variety of
programming language.

Solution: Programming Language Wrapper Hierarchy.

Fortran Implementation Base

Handle Based Fortran Wrapper (Only Primitive Types)

C++ Object Oriented Wrapper

SWIG Wrapper Generator

Python Ruby ETC

C Interface

Programming Language Support - Details

!23

! Complex Fortran Data Type

TYPE :: DistributedSparseMatrix_t

 ! Simple data

 INTEGER :: matrix_dimension

 INTEGER :: start_column, end_column

 …

 ! Variety of members

 TYPE(ProcessGrid_t) :: grid

 ! Also contains allocatable subtypes

 TYPE(LocalMatrix_t), DIMENSION(:,:), ALLOCATABLE :: local_data

 …

END TYPE

SUBROUTINE ComputeExponential(InputMat, OutputMat)

 TYPE(DistributedSparseMatrix_t), INTENT(in) :: InputMat

 TYPE(DistributedSparseMatrix_t), INTENT(inout) :: OutputMat

 ! Solver Logic

END SUBROUTINE

Using complex data types makes life easier in Fortran, but
makes it harder to call from other languages.

Pletzer, Alexander, Douglas McCune, Stefan Maszala, Srinath Vadlamani, and Scott Kruger. "Exposing Fortran derived types to C
and other languages." Computing in Science & Engineering 10, no. 4 (2008): 86-92.

Programming Language Support - 2

!24

TYPE :: DistributedSparseMatrix_wrp ! Handle Datatype

 TYPE(DistributedSparseMatrix_t), POINTER :: DATA

END TYPE

SUBROUTINE ConstructMatrix_wrp(ih_this)

 INTEGER(kind=c_int), INTENT(INOUT) :: ih_this(SIZE_wrp) ! SIZE_wrp is size of a pointer struct.

 TYPE(DistributedSparseMatrix_wrp) :: this

 ALLOCATE(this%data)

 ih_this = TRANSFER(this,ih_this) ! Convert between handle and integer.

END SUBROUTINE

SUBROUTINE ComputeExponential_wrp(ih_InputMat, ih_OutputMat) bind(c,name=“ComputeExponential_wrp")

 INTEGER(kind=c_int), INTENT(in) :: ih_InputMat(SIZE_wrp)

 INTEGER(kind=c_int), INTENT(inout) :: ih_OutputMat(SIZE_wrp)

 TYPE(DistributedSparseMatrix_wrp) :: InputMat

 TYPE(DistributedSparseMatrix_wrp) :: OutputMat

 InputMat = TRANSFER(ih_InputMat,InputMat)

 OutputMat = TRANSFER(ih_OutputMat,OutputMat)

 CALL ComputeExponential(InputMat%data, OutputMat%data)

END SUBROUTINE

To simplify things, we will only expose handles to data objects.

Programming Language Support - 3

!25

// C Routine To Call

void ConstructMatrix_wrp(int *ih_this);

void ComputeExponential_wrp(const int *ih_Input, int *ih_Output);

class DistributedSparseMatrix {
public:
 DistributedSparseMatrix() {
 ConstructMatrix_wrp(this->handle);
 }
 int handle[SIZE_wrp];
};

void ComputeExponential(const DistributedSparseMatrix &InputMat,
 DistributedSparseMatrix &OutputMat) {
 ComputeExponential_wrp(InputMat.handle, OutputMat.handle);
}

C++ Uses the same interface

C Interface is now simple to expose.

!26

Example Applications

Quantum Chemistry

!27

• Standard eigensolvers can make limited use of the sparsity of a matrix,
but will be outperform by matrix function based approaches.

• Calculation of water clusters of various sizes, 631G basis set, using the
TRS2 density matrix method to approximate the fermi function.

Quantum Chemistry - 2

!28

• Use of communication avoiding algorithms and task
based openmp parallelization allows for calculations
using tens of thousands of cores.

Social Network Analysis

• Estrada’s Scaled Matrix Exponential Metric: eβA

• Example, social networks:

!29

Node A
Node B

Node C

Node DNode ENode F

Node G

Node H

Node I

Estrada, Ernesto, Naomichi Hatano, and Michele Benzi. "The physics of communicability in complex networks." Physics reports 514, no. 3 (2012): 89-119.

Social Network Analysis

• Estrada’s Scaled Matrix Exponential Metric: eβA

• Example, social networks:

!30

Node A
Node B

Node C

Node DNode ENode F

Node G

Node H

Node I

Social Network Analysis

• Estrada’s Scaled Matrix Exponential Metric: eβA

• Example, social networks:

!31

Node A
Node B

Node C

Node DNode ENode F

Node G

Node H

Node I

Social Network Analysis

• Estrada’s Scaled Matrix Exponential Metric: eβA

• Example, social networks:

!32

Node A
Node B

Node C

Node DNode ENode F

Node G

Node H

Node I

Social Network Analysis - In Practice

!33

0 500 1000 1500 2000 2500 3000
Nodes Removed

10

15

20

25

30

35

40

45

50

A
ve

ra
ge

N
um

b
er

of
E
dg

es

Random

Largest Degree

• Procedure:

• Remove a node from the graph

• Random Node

• Node with largest degree

• Compute the matrix exponential

• Compute the sparsity

• Repeat

• Network Resiliency calculations:

• Data Set: Israeli Social Network “TheMarker Cafe”

• Nodes: 69413. Sparsity: 0.04%.

Search Engine Optimization

!34

• Finding important nodes in a directed network.

• Going beyond page rank by ranking nodes as Authorities and
Hubs. Authorities are important nodes, hubs point to
authorities.

• Matrix functions to compute:

• Hub similarity matrix: H = cosh(√(AAT)).

• Authority similarity matrix: A = cosh(√(ATA)).

• Calculation Method:

• Scaling and squaring method with Chebyshev polynomials:
cosh(√4x) = 2cosh2√x - 1.

Benzi, Michele, Ernesto Estrada, and Christine Klymko. "Ranking hubs and authorities using matrix functions." Linear Algebra and its Applications 438,
no. 5 (2013): 2447-2474.

Search Engine Optimization - 2

!35

• Authority similarity for the High Energy Physics
Phenomenology citation graph.

• 34,546 papers, 421,578 citations.

• Largest eigenvalue is > 3000, so some scaling factor is
necessary.

• Sparsity:

• A: ~0.04%.

• AAT: ~1%

• cosh(√(βAAT)): 31%.

Conclusion

!36

• Matrix functions have a number of different applications,
motivating the creation of new libraries.

• Using sparse matrix algebra techniques, low order scaling
techniques exist to compute the functions of sparse matrices.

• A combination of communication avoiding algorithms and
task based parallelization enable strong scaling, massively
parallel calculations.

• Automated data redistribution techniques, parallel file i/o
using standard formats, and support for many programming
languages leads to an easy to use library.

• Applications to quantum chemistry, graph analysis, and more.

• https://william-dawson.github.io/NTPoly/

