#### 2018/02/26 2017年度第2回 計算科学フォーラム

# 乱流の準直接計算技術の工学応用

#### みずほ情報総研株式会社 山出吉伸

# 何故、計算するのか?







機械: L: 10<sup>-1</sup>~10<sup>3</sup> [m]

1999~2002 年 地球 : L: 10<sup>4</sup> [m]

# 講演の内容

■はじめに ■準直接計算の工学応用事例 ✓船体抵抗予測技術の開発 ✓車室内騒音の予測 √ポンプ吸い込水槽の吸込渦発生メカニズム √遠心送風機から発生する空力騒音の予測 √風車

■ポスト京にむけて

1. はじめに

# 乱流の準直接計算



# 車体まわり流れの準直接計算



車体まわり流れの準直接計算 (400億グリッド) 10mm

車両上面に発達する乱流境界層に おける渦の可視化結果

車体表面における0.5mm程度の渦の運動を計算

## 車体まわり流れの準直接計算



### <u>定常圧力場</u> →*c*。(燃費)



#### <u>変動圧力場</u> →非定常空気力(走行安定性) →車室内騒音(乗り心地)

# 計算機の動向:top500



出典:http://www.top500.org/

# 準直接計算技術の工学応用



# 2.2 準直接計算の工学応用2 車室内騒音の予測

# Introduction

## Background & Objective



# 

## Test Car



Covers and flat plate to simplify external flow





All interior components have been removed to simplify internal acoustics Methodology

## **Direct Simulation of Interior Noise**



### Incompressible Flow Solver



## Wall Resolving LES of Exterior Flow





- Frequency  $F = \frac{V}{2\pi R}$
- In this case, F=2.0 kHz V=30 m/s  $\Rightarrow R=2.4 \text{ mm}$ 
  - Grid resolution1.6 mm

## Wall Resolving LES of Exterior Flow



### Diameter of Vortices 0.3 mm $(\delta^+ = \delta U_{\tau} / v \sim 30)$

# Numerical Conditions

# **Computational Model**

Car Shape: Simplified Commercial Car Model (SUZUKI)
Computational Domain: 40m × 18m × 9.5 m
Boundary Condition:

Paper # (if applic

- ✓ Inlet: Constant Inlet Velocity (30m/s)
- ✓ Outlet : Constant Pressure
- ✓ Other: Non-Slip

SGS model: Dynamic Smagorinsky Model



## **Computational Cases**

|                                  | Base mesh  | 5 billion mesh | 40 billion<br>mesh |
|----------------------------------|------------|----------------|--------------------|
| Number of Grids                  | 80 million | 5 billion      | 40 billion         |
| Wall Normal Grid Resolution [mm] | 0.8        | 0.2            | 0.1                |
| Number of CPUs                   | 1,204      | 3,456          | 39,998             |
| Cal. Time [sec]                  | 1.62       | 0.28           | 0.01               |
| Flow Visualization               | 0          | 0              | 0                  |
| Comparisons with Measurements    | 0          | 0              | Х                  |



Super Computer, K

Results

# **Computational Results**

- $\square C_d \text{ and } C_1$  $\square \text{ Visualization}$ 
  - ✓ Pressure (time average and RMS)
  - ✓ Vortical Structure
  - ✓ Pressure Fluctuations
- ■Power Spectra of Pressure Fluctuations
- Acoustic and Hydrodynamic Pressure Fluctuations

 $C_{\rm d} \& C_{\rm l}$ 



## Static Pressure (5 billion mesh)



## **Vortical Structures**



#### 5 Billion Mesh LES

40 Billion Mesh LES

SAE INTERNATIONAL

Base Mesh LES

## **Vortical Structures**





#### 40 Billion Mesh LES

#### Pressure Fluctuation on the Car Surface (1/3)





#### Pressure Fluctuation on the Car Surface (2/3)



#### Base Mesh LES

#### **5** Billion Mesh LES



#### Pressure Fluctuation on the Car Surface (3/3)



#### Base Mesh LES

#### **5** Billion Mesh LES



### Sampling points of pressure fluctuation



### Power Spectrum of Pressure Fluctuation (1/3)




#### Power Spectrum of Pressure Fluctuation (2/3)





#### Power Spectrum of Pressure Fluctuation (3/3)





#### Acoustic and Hydrodynamics Pressure Fluctuation (1/2)



#### Acoustic and Hydrodynamics Pressure Fluctuation (2/2)



#### 2.3 準直接計算の工学応用3 ポンプ吸込水槽の 吸込み渦発生メカニズム

#### Numerical Conditions



#### Grid Resolutions Dependency





#### Appearance and Disappearance



Streamline on the bottom wall colored by the vertical vorticity





**Top View** 



#### Approaching Boundary Layer

# Turbulent Boundary Layer Laminar Boundary Layer No Boundary Layer



#### Approaching Boundary Layer



#### **Turbulent Boundary Layer**



No Boundary Layer



#### Laminar Boundary Layer

#### Summary of Case-1

# ■Vortex Appearance ✓ Velocity shear of approaching B. L. ✓ Small vortices in TBL are not origin. ■Vortex Disappearance ✓ Merging of vortices

#### 現象の理解に基づく吸込渦抑制対策





対策1: 水深を高くする。

対策2: 水槽を深くする。

#### 現象の理解に基づく吸込渦抑制対策



標準

対策1: 水深を高くする。

対策2: 水槽を深くする。

# 2.4 準直接計算の工学応用2遠心送風機から発生する空力騒音の予測

## INTRODUCTION

#### Background & Objective

Accurate prediction of aeroacoustics noise from a blower or fan Validation studies for several kind of blowers and fan





Ref. AICFM13-023 AICFM13-139

Ref. AICFM13-097

#### Test Centrifugal Blower

| Number of impeller blades | 12                  |
|---------------------------|---------------------|
| Diameter at inlet         | 260 [mm]            |
| Diameter at outlet        | <b>460 [mm]</b>     |
| Outlet height             | <b>39 [mm]</b>      |
| Blade profile             | NACA65              |
| <b>Revolution speed</b>   | 2,000 ~ 3,000 [rpm] |





#### Aeroacoustics Noise from a Blower

#### Tonal Noise

### Stator-Rotor Interaction Broad Band Noise

✓ Flow Separations and/or Secondary flow
 ✓ Vortex Motions in TBL



#### Vortex Scale in TBL on Impeller



## CONDITIONS

#### **Computational Model**



#### **Computational Grids and Cases**



10 million LES (Δ<sup>+</sup> = 80), 20 revolutions of impeller
 80 million LES (Δ<sup>+</sup> = 40), 10 revolutions of impeller
 640 million LES (Δ<sup>+</sup> = 20), 10 revolutions of impeller
 5 billion LES (Δ<sup>+</sup> = 10), 0.05 revolutions of impeller

RESULTS

#### Static Head



**64 million LES** 

#### Vortices in TBL on Impeller



#### Vortices in TBL on Suction Side



#### Vortices in TBL on Pressure Side





**10 million LES** 

**80 million LES** 

640 million LES

#### Pressure Coefficients







**64 million LES** 

#### Power Spectra of Pressure Coefficients



#### 2.4 準直接計算の工学応用4 風車後流の高解像度計算

#### 風車後流の高解像度計算





#### ウインドファームの流れ解析 (九州大学、提供)

#### 風車まわり流れ解析

3. ポスト京にむけて

#### HPCものづくりワークショップ(2018/02/03、東大生研)

#### 重点課題8Cにおける開発項目とその目的

- FFBの高速化(コデザイン)、理化学研究所
   ソフト・ハードあわせ100倍の高速化
- ・圧縮性コードの開発

空力騒音の直接計算、オーバーセット計算のロバスト性向上

- ・LBMベースの流体解析システムFFXの開発、九州大学 完全自動メッシュ作成、1兆規模大規模計算
- ・乱流モデルの開発

準直接計算の抜本的計算コストの削減
### LBMコードによる乱流の準直接計算

#### 対流項は隣接グリッドからのコピーから計算され精度が高い



#### LBMコードによるNACA0012翼まわり流れ解析 (九州大学)

### 精度検証-1:一様等方性乱流



乱流エネルギースペクトル

乱流構造の可視化結果





## 精度検証-3: 複雑形状まわり流れ

- グリッド数:約8億グリッド
   計算機:FX100 48ノード (48TFLOPS)
   処理時間:
  - √メッシュ作成:約1分
  - ✓ 流れ計算約:約0.3 sec/step

- グリッド数:約500億グリッド ■ 計算機:
- ✓ 京 1,536ノード (192 TFLOPS)
   処理時間:
  - ✓ メッシュ作成:1分
    ✓ 流れ計算約:約1.1 sec/step



京におけるweak-scaleベンチマーク結果



京のほぼフルノードを用いて2.2兆グリッドまでスケールすることを確認

おわりに

# おわりに

| 年代          | 2000年代                     | 2010年代                     | 2020年代                       |
|-------------|----------------------------|----------------------------|------------------------------|
| 計算機性能       | GFLOPS級                    | PFLOPS級                    | EFLOPS級                      |
| 代表的な<br>計算機 | ES                         | 京                          | ポスト京                         |
| 計算規模        | Million<br>10 <sup>6</sup> | Billion<br>10 <sup>9</sup> | Trillion<br>10 <sup>12</sup> |

# 製品性能予測と現象理解