

2023年度 第2回計算科学フォーラム

Developments and Applications in Multiscale Molecular Dynamics Simulations for Biomolecular Condensation Using GENESIS

Cheng Tan

Computational Biophysics Research Team, RIKEN Center for Computational Science 2024-03-22 Friday

Developments: A User-Friendly, High-Performance CG MD Software.

C.Tan et al. JCP, 2020; PLoS Comput. Biol., 2022. J. Jung, C.Tan, Y. Sugita, in revision, 2024.

Applications: A Comprehensive Exploration of the Regulation of LLPS.

C.Tan, A. Niitsu, Y. Sugita, JACS Au, 2023.

Liquid-Liquid Phase Separation (LLPS) in Biology

Banani et al. 2017 Nature Rev. Mol. Cell Biol.

Same thing, different names:

"droplet", "condensate", "granule", "membraneless organelle"

Biological Problem: Condensation Regulation

0

Background

Question 1: What's the <u>driving force</u> of the passive regulation?

Theoretical Frameworks of Biomolecular LLPS

Clients are not always facilitators Ruff et al. 2021 PNAS

Most existing theories only talk about attractive interactions!

Question 2: What's the role of <u>repulsive interactions</u> in the regulation of LLPS?

Multi-scale Simulations of Biomolecular Systems

Task of MD: numerically solving Newton's equations of motion

 $MX\ddot{(}t) = -\nabla U(X) + f(X,\dot{X})$

Potential energy U(X) determines accruracy and efficiency.

- Time-scale: ms-s
- Number of proteins: 10³-10⁵

C.D. Crowe et al. 2018, Interface Focus

Popular Coarse-grained Models for Biomolecules

Residue-level coarse-graining: ~10 atoms / CG particle

- Protein: AICG2+ W. Li et al. 2014, PNAS.
- DNA: 3SPN.2C G. Freeman *et al.* 2014, *JCP.*
- RNA: Go-like
 - N. Hori *et al.* **2012**, *JCTC.*

3 beads / nucleotide: Phosphate, Sugar, Base 3 beads / nucleic acid

Popular Coarse-grained Models for Biomolecules

Protein-DNA: **PWMcos**

C.Tan, S. Takada, 2018, JCTC.

Residue-level CG models: protein-DNA systems

Thanks to: Shoji Takada Giovanni Brandani @ Kyoto Univ.

C.Tan, S. Takada, 2020, PNAS.

0

HPS/KH Models for IDP

Dignon et al. 2018 PLoS Comput. Biol.

Difficulties of Carrying out Coarse-grained MD

"Barriers" of running CG MD simulations

1. To combine different models

- Protein model: by Takada-group@Kyoto U.
- DNA model: by de Pablo-group@U. Chicago
- IDP model: by Mittal-group@Texas A&M U.
- ...

2. To apply to large-scale simulations

- Memory limit using *atomic decomposition*
- Computational efficiency
- Robustness and accuracy

Part I: Implementation of CG Models

Generalized-ensemble simulation system

Jung et al. **2015** WIREs Comput. Mol. Sci. Kobayashi et al. **2017** J. Comput. Chem.

Implementation of CG Models in GENESIS C. Tan et al. 2022, PLoS Comput. Biol.

Improve Computational Efficiency in CG Simulations

0

Models

Popular Coarse-grained Models for Biomolecules

Part I: Implementation of CG Models in GENESIS

Part II: Application of GENESIS MD to HERO11 on supercomputers (Fugaku, Hokusai BW)

C.Tan, A. Niitsu, Y. Sugita, JACS Au, 2023.

Testify Hero11 α -helices Stability using Atomistic MD

t=0

CG Modeling of Hero11 and TDP-43

N

MD

FPS

C.Tan, A. Niitsu, Y. Sugita, JACS Au, 2023.

Homotypic Condensation of TDP-43

2: MD of Biomolecule LLPS

Homotypic Condensation of Hero11 WT-α and WT-noα

- 180×180×2000Å³
- T=50~350K
- IC=150mM

 $T_c \ll 295K$ Hero11: low critical temperature

C.Tan, A. Niitsu, Y. Sugita, JACS Au, 2023.

Heterotypic Condensation of TDP-43 + Hero11-no-α

C.Tan, A. Niitsu, Y. Sugita, JACS Au, 2023.

N

N

Structure, dynamics, interaction of Hero11-no-αand TDP-43 in two phasesC.Tan, A. Niitsu, Y. Sugita, JACS AU, 2023.

Effects of α-helical secondary structure in Hero11

MD of Biomolecule LLPS

C.Tan, A. Niitsu, Y. Sugita, JACS Au, 2023.

Distribution of Hero11:

- α-helical model: interial of condensate
- IDP model:
 - surface of condensate

Surface electrostatics & fusion propensity

Welsh et al. 2022 Nano Lett.

Summary: Hero11's LLPS-Regulation Mechanisms

C.Tan, A. Niitsu, Y. Sugita, JACS Au, 2023.

Remaining Question: How to verify mechanism no. 3?

• We need a more powerful tool!

MD of

Improve Computational Efficiency in CG Simulations

CG MD of Droplets Going to Ultra-Large Scales

S

Component: TDP-43-LCD

- $n_{chain} = 1,000$
- 1000Å×1000Å×1500Å

Jung, Tan, & Sugita, *bioRxiv*, 2023 Simulations carried out on Fugaku

CG MD of Droplets Going to Ultra-Large Scales

Ņ

MD of Biomolecule LLPS

Developments of CG in GENESIS
User-friendly high-performance simulation tool

Regulation of biomolecular condensation
High-charged IDPs and their interactions regulate LLPS

Reconstruction of Atomistic Models from CG Simulations with GENESIS

All-atom simulations of TDP43-Hero11 Condensates

Acknowledgements

RIKEN

- Yuji Sugita
- Jaewoon Jung
- Chigusa Kobayashi
- Diego Ugarte La Torre
- <u>Ai Niitsu</u>
- Shintaro Iwasaki

U. Tokyo

- Yukihide Tomari
- Kotaro Tsuboyama
- Selena Setsu
- Andy Lam

Kyoto U.

- Shoji Takada
- Giovanni Brandani
- Azuki Mizutani
- Hokkaido U.
- Shinichi Nakagawa
- Nagahama Inst. Bio-Sci. Tech.
- Takao Yoda

HPCIC計算科学フォーラム

HOKUSAI

Generalized-ensemble simulation system